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Abstract: Most of today’s water supply systems are based on plastic pipes. They are characterized 
by the retarded strain (RS) that takes place in the walls of these pipes. The occurrence of RS increases 
energy losses and leads to a different form of the basic equations describing the transient pipe flow. 
In this paper, the RS is calculated with the use of convolution integral of the local derivative of 
pressure and creep function that describes the viscoelastic behavior of the pipe-wall material. The 
main equations of a discrete bubble cavity model (DBCM) are based on a momentum equation of 
two-phase vaporous cavitating flow and continuity equations written initially separately for the gas 
and liquid phase. In transient flows, another important source of pressure damping is skin friction. 
Accordingly, the wall shear stress model also required necessary modifications. The final partial 
derivative set of equations was solved with the use of the method of characteristics (MOC), which 
transforms the original set of partial differential equations (PDE) into a set of ordinary differential 
equations (ODE). The developed numerical solutions along with the appropriate boundary condi-
tions formed a basis to write a computer program that was used in comparison analysis. The com-
parisons between computed and measured results showed that the novel modified DBCM predicts 
pressure and velocity waveforms including cavitation and retarded strain effects with an acceptable 
accuracy. It was noticed that the influence of unsteady friction on damping of pressure waves was 
much smaller than the influence of retarded strain. 
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1. Introduction 
1.1. Gaseous and Vaporous Cavitation 

Cavitation is one of the natural phenomena whose thorough understanding should 
be a scientific priority. Among others, it takes place when gas is released from the liquid. 
It occurs in hydraulic systems (water supply, hydropower, heating, cooling, etc.) in which 
the flow (forced by the pressure gradient) takes place through pressurized pipes. There 
are two types of cavitation: gaseous and vaporous [1–3]. 

More dangerous is vaporous cavitation, which occurs when the pressure drops to the 
saturated vapor pressure. This type of cavitation is rapidly changing, as it only takes place 
during the duration of the reduced pressure. In the literature, there is a group of mathe-
matical models based on this type of cavitation, the so-called discrete vapor cavity models 
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(DVCM) [1–3]. In the event of a water hammer, the reduction of pressure to the saturated 
vapor pressure takes a relatively short time, which is followed by an implosion of the 
resulting vapor regions. The implosion is accompanied by large local increases in the ve-
locity of the liquid, because the cavitation space must rapidly be filled with liquid at the 
time of pressure increase (above the vapor pressure). The impact of the liquid against the 
walls of the pipe (as well as the walls of other elements of the systems: valves, turbines, 
pumps, flow meters, etc.) results in cavitation erosion in the long term. Irreversible losses 
appear in the material of the walls of the pipes and other elements of the system. Sections 
in which such erosion takes place are systematically weakened in terms of strength, and 
it is in these places that leaks or, in extreme cases, complete damage of the structure can 
occur. Cavitation also leads to a reduction of the efficiency of hydraulic systems, contrib-
uting to the deterioration of the operation of energy-saving systems in hydraulic drives 
[4]. 

The second type of cavitation, namely gaseous cavitation, is a slowly changing phe-
nomenon occurring in systems with unsteady flows (dynamic, rapid changes of velocity 
and pressure) or large pressure drops along the length of the system. Each liquid dissolves 
a certain amount of air (possibly a different gas). In water systems (water supply net-
works), the average amount of dissolved air is about 2%. In oils, on the other hand, the 
amount of dissolved air can reach up to about 10%. Hence, the influence of this type of 
cavitation is much more noticeable in oil-hydraulic systems than in water supply systems. 
Interestingly, during water hammer, such cavitation areas, due to the large time necessary 
for desorption and absorption, are beneficial. Their presence causes a faster damping of 
dynamic waveforms, as the “air bags” emitted by their action resemble local air–liquid 
shock absorbers. The influence of this type of cavitation is still poorly understood both 
experimentally and theoretically. There is a group of models called discrete gas cavity 
models (DGCM) [1,2], which take into account the influence of free gas in a simplified 
way. 

The type of pipe material also significantly affects the intensity and timing of transi-
ent phenomena [5]. The flows in metal pipes with vapor–gas cavitation areas are well rec-
ognized and described. However, if we look at plastic pipes, which are now starting to 
displace metal pipes (especially in water supply systems), the researchers have mostly 
used the two basic cavitation models, i.e., the DVCM and the DGCM. Apart from these 
two models, alternative models have been developed, including a revised version of the 
DVCM model proposed by Adamkowski [6,7] as well as a model based on two-phase flow 
equations that can be called a discrete bubble cavity model (DBCM), which was developed 
by Shu [8]. Shu’s model does not generate the unrealistic pressure spikes due to flow dis-
continuity at each computational section [8] that have been found in DVCM simulations. 
In DGCM, it is difficult to assign the physical amount of free air at computational sections 
along the pipeline. The model that is based on two-phase pipe flow equations is in prin-
ciple more realistic than the model that is based on single-phase pipe flow equations with 
cavities lumped at computational sections. However, the aforementioned discrete Adam-
kowski cavity (DACM) and DBCM models have not been previously used to model tran-
sient cavitating flow in plastic pipes. The main objective of this paper is to present a novel 
DBCM that will enable the simulation of transient cavitating flows in plastic pipes.  

1.2. Transient Cavitating Flow in Plastic Pipes 
Among the phenomena accompanying transient flows, the most important are (1) 

unsteady friction (UF, other name: skin friction), (2) cavitation (CAV), (3) viscoelastic 
property of pipe deformation (flow in plastic conduits) associated with the retarded strain 
(RS), and (4) mutual fluid–structure interaction (FSI) of the flowing liquid with the vibra-
tions of the pipe walls. In this work, we will focus in detail on the first three phenomena. 
They will be implemented in the revised DBCM model. The continuity equation with the 
retarded strain term was originally proposed by Rieutord and Blanchard [9]. Cavitation 
was modeled by Güney [10] using the column-separation modeling assumption proposed 
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by Swaffield [11] and Safwat [12]. Another scientist examining the effect of cavitation oc-
curring during transient flow in PE and PVC pipes was Mitosek [13,14], who showed that 
an increased pressure reduction is accompanied with gas desorption (reduced pressure 
oscillations with the increase time period of their existence). Hadj-Taïeb with Taïeb [15] 
proposed initially a numerical model based on the conservative finite difference method 
to solve the nonlinear system of hyperbolic partial differential equations describing the 
transient flow in which the degasification takes place (according to Henry’s law). Their 
study showed that the degasification area is strongly connected with the wall elasticity. 
The same two authors [16] proposed an alternative modified mathematical model that 
includes retarded strain and cavitation, which was solved with the second-order finite 
difference scheme. The mixture density in this model was expressed by means of a non-
linear expression of the liquid volume fraction. Borga et al. [17,18] conducted several tran-
sient tests with localized gas cavities in around 200 m long HDPE pipe and concluded that 
the presence of the leak (or air valves) in cavitating flow induces a greater damping and 
dispersion of transient pressure waves. Soares et al. [19,20] continued the research of 
Borga (which was done under the supervision of H. Ramos) and compared the effect of 
used cavitation models DVCM and DGCM for the prediction of transient flows with cav-
itation in HDPE pipes. The results indicated that the assumption of the ideal gas law 
(DGCM) is more appropriate than a simple adoption of vapor pressure when the pressure 
reaches vapor pressure (DVCM) and induces more attenuation and dispersion of transient 
pressures. For flows with cavitation, a new set of pipe-wall viscoelastic parameters was 
determined (calibration technique). The unsteady friction losses, pipe-wall viscoelasticity, 
and wave speed variation due to the formation of localized gas cavities were described 
only by the creep function. Such an approach lumped all these important phenomena in 
the coefficients of the creep function. Keramat et al. [21] utilized DVCM and modeled RS 
uses a modified Kelvin–Voigt model to study the unsteady flow with cavitation in plastic 
pipes. His model did not include at that time the unsteady friction effects. The main con-
clusion from the presented simulations (compared to simulated results with Covas [22] 
and Soares data [19]) is that viscoelastic pipes strongly diminish the dangers of column 
separation: “First, cavity opening and collapse occur only one or two times instead of tens 
of times (as inelastic pipes)”. Two years later, Keramat and Tijsseling [23] were first to 
present a numerical model that included all four important phenomena that take place in 
transient pipe flows: UF, CAV, RS, and FSI. Unfortunately, to date, there are no experi-
mental results that are conducted to check this interesting model in the full extent. In 2018, 
Urbanowicz and Firkowski developed the foundations of the model presented in this pa-
per [24]. A year later, Urbanowicz et al. [25] compared the DACM and DBCM models, 
which had not been used before, for the analysis of cavitation flows in plastic pipes, indi-
cating that they both model the phenomena in a similar way, despite the fact that they are 
characterized by a significantly different mathematical notation. 

1.3. Recent Progress in Cavitation Modeling in Metal Pipes 
Liu et al. [26] analyzed cavitation that can take place in long-distance transport pipe-

lines. The water hammer due to the collapse of air cavities in the pipeline was discussed 
when the pump unit is shut down due to an incident. The theoretical and numerical anal-
ysis pointed out that it is very important to prevent the occurrence of large water hammer 
loads due to the collapse of flow interruption in such a system. Santoro et al. [27] tested 
the DVCM model, writing the continuity equation in terms of mass balance instead of 
volume balance. Such an assumption allowed calculations with appropriate computa-
tional fine grids. Additionally, the flow field was assumed to be two-dimensional (2D ax-
ial-symmetric flow), in order to evaluate unsteady friction without the need of parameters 
calibration. This research pointed out that one-dimensional (1D) models are weakly sen-
sitive to grid size, whereas 2D model results are practically grid-independent, and in the 
opinion of the authors, the 2D model performs better than the 1D ones. Shankar et al. [28] 
studied the optimal operation of centrifugal pumps to avoid the major harmful issues as 
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cavitation and water hammering. These authors built a system with a cascade parallel 
pumping setup. The extensive experimental study reveals that the preferable operating 
region enhances reliability as well as reduces the occurrence of faults. This paper can serve 
as a reference to VFD pumping systems and paves the way for sensor-less control. Zhao 
et al. [29] built an experimental test stand to realize a water hammer event with multipoint 
collapse. The influencing factors and laws of the cavity length and water hammer pressure 
have been summarized using the experimental data. They also reveal that the initial flow 
rate and valve-closing speed greatly affect the water hammer pressure rise and cavity 
length. In their next work [30], the authors presented a new water hammer velocity for-
mula, a new cavity model, and introduced a floating grid method. An in-house program 
written in C++ confirmed that the simulation results of the new model matched the meas-
ured values.  

Sun et al. [31] proposed a quasi-two-dimensional transient model coupled with 
DVCM which, according to the authors’ analysis, can provide a better fit than classic 1D 
solutions. Warda et al. [32] performed three-dimensional computer fluid dynamics (CFD) 
simulations based on the finite volume numerical approach. The cavitation was modeled 
with the use of two models: the Volume of Fluid (VOF) and Schnerr–Sauer. They con-
cluded that the 3D model that was adopted is “deemed physically superior to the existing 
1D models as it removes the restriction of the 1D models that vapor cavities, when formed, 
fill the whole cross-section of the pipe without radial variation”. Sanín-Villa et al. [33] 
considered the influence of the convective terms in the momentum and continuity equa-
tions (which standardly are neglected). The cavitation problem has been evaluated by use 
of the DVCM model. In conclusion, they stated that the influence of the convective term 
is small compared with a simple model where those terms are neglected. Tang et al. [34] 
used Fluent software to investigate the cavitation flow in the pipeline. A density–pressure 
model has been implemented into the continuity equation by using the further develop-
ment of a user-defined function, which gives the possibility of studying the effects of the 
variable wave speed on the transient cavitation flow. The weakly compressible fluid 
RANS model (CFD) results agree well with the measured results. Saidani et al. [35] ana-
lyzed the temperature effect (in a range from 4 to 95 °C) on unsteady flow with cavitation. 
These authors simulated single-phase and two-phase transient flows in a hydraulic cop-
per pipe system. The DVCM and DGCM models were used. From the performed simula-
tions, it was evident that the water hammer is considerably sensitive to the temperature, 
and its proper value needs to be considered at the design stage of hydraulic systems. Yang 
et al. [36] used a uniform cavitation distribution model in which the critical flow velocity 
gradients are calculated both in front and at the back of the section and are the sufficient 
condition to define water column separation. Dynamic meshes were applied for tracking 
the change of vaporous cavitation. However, multidimensional models are computation-
ally expensive. 

2. Mathematical Model Derivation 
The original bubble cavitation flow model was introduced by Shu more than fifteen 

years ago [8]. Its applicability was limited to systems made of metal pipes. Today, when 
plastic pipes are replacing traditional pipes (this trend is especially visible in water supply 
systems), there is a strong need to modify this interesting numerical model. In the model 
discussed and presented below, a single-phase flow is treated as its special solution. 

2.1. Momentum and Continuity Equations  
The derivation starts from the equation of momentum of two-phase vapor–liquid 

flow in a freely oriented conduit:  𝜕𝜕𝑡 (𝜌 𝑣 𝐴) + 𝜕𝜕𝑥 (𝜌 𝑣 𝐴) + 𝐴 𝜕𝑝𝜕𝑥 + 𝜋𝐷𝜏 + 𝑔𝜌 𝐴 sin 𝜃 = 0 (1)

in which 𝜌  being the mixture density is calculated: 
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𝜌 = 𝛼𝜌 + (1 − 𝛼)𝜌 . (2)

Please note that this starting momentum equation, as well as the set of the continuity 
equations (Equation (4)), is identical to the one discussed in the IAHR Synthetic Report 
[37]. After the differentiation and ordering, one gets the following form: + 𝜌 + 𝜌 𝑣 + 𝑣 + + 𝜏 + 𝑔𝜌 sin 𝜃 = 0. (3)

For the sake of simplicity, let us assume that the pipe is horizontal, i.e., θ = 0. Thus, 
the last term on the left-hand side of the above equation (Equation (3)) is zero. Now, let 
us write the continuity equations written separately for the gas and liquid phase, respec-
tively: 𝜕𝜕𝑡 (𝜌 (1 − 𝛼)𝐴) + 𝜕𝜕𝑥 (𝜌 (1 − 𝛼)𝐴𝑣 ) = 0𝜕𝜕𝑡 (𝜌 𝛼𝐴) + 𝜕𝜕𝑥 (𝜌 𝛼𝐴𝑣 ) = 0  (4)

where α—volumetric fraction of liquid. 
Adding the continuity equations (Equation (4)) together for the respective phases 

gives: (𝜌 (1 − 𝛼)𝐴 + 𝜌 𝛼𝐴) + (𝜌 (1 − 𝛼)𝐴𝑣 + 𝜌 𝛼𝐴𝑣 ) = 0. (5)

Next, assuming that a homogeneous bubbly flow takes place, then the dispersed va-
por phase does have the same velocity as the surrounding continuous liquid phase  𝑣 = 𝑣 = 𝑣 : 𝐴𝜌 + (𝐴𝑣 𝜌 ) = 0. (6)

By making differentiation and ordering in Equation (6), the following result is ob-
tained: 𝐴 + 𝜌 + 𝐴𝜌 = 0. (7)

Dividing Equation (7) by 𝐴𝜌 , the first useful form of this equation is derived: + + = 0. (8)

However, when one multiplies Equation (7) by 𝑣  and then divides by A, we get the 
second useful form of Equation (7): 𝑣 + + 𝑣 𝜌 = 0. (9)

Using the above Equation (9) and the fact that the analyzed system is horizontal, the 
momentum Equation (3) can be reduced to a simpler form: 𝜌 + + 𝜏 = 0. (10)

Please note that Equation (10) reduces to the equation of a single-phase flow (contin-
uous liquid phase) when no cavitation occurs (mean values of pressure in an analyzed 
cross-section are larger than the vapor pressure). 

The next step is to derive the continuity equation. From the works [22,37,38], it fol-
lows that in bubble flow and plastic pipes, the fluid elasticity (separately defined for liquid 
and vapor) and the pipe deformation can be defined as follows:  = ; =  and = + 2  (11)

where Ξ = 𝜉—enhanced pipe restraint factor. The first two equations represent liquid 
and vapor elasticity, respectively, whereas the third one defines pipe deformation (the 
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right-hand one). The derivation of the first two ones is straightforward. This is not the case 
for the third one—its derivation is presented in Appendix A.  

The total derivative of Equation (2) mixture density 𝜌  is: = 𝛼 + (𝜌 − 𝜌 ) + (1 − 𝛼) . (12)

When Equations (11) and (12) are used in the continuity equation, Equation (8), one 
gets: 𝜌 + + ( ) + (𝜌 − 𝜌 ) + 2𝜌 + 𝜌 = 0. (13)

In addition, a constant pressure wave speed is assumed. In the proposed model, the 
value of the speed will be assumed for the steady flow occurring before the water hammer 
event. Then, there is only pure liquid phase (𝛼 = 1). The last term of the square bracket in 
Equation (13) vanishes, and the formula under square bracket reduces to: 𝑐 = 𝜌 Ξ𝐸 + 1𝐾  (14)

which is the pressure wave speed of the pure liquid phase. The above wave speed equa-
tion includes elastic effects of the fluid (𝐾 ) and of the pipe wall (𝐸). Enhanced pipe re-
straint factor Ξ is calculated in a different way in thin ((𝐷/𝑒) < 25) and thick-walled pipe-
lines [2].  

Equation (14) governs the final form of the continuity equation for unsteady flows in 
plastic pipes: + (𝜌 − 𝜌 ) + 2𝜌 + 𝜌 = 0. (15)

In non-slip flow conditions, the proportion of the dispersed phase is of a statistical 
nature; i.e., the volumetric concentration and the mass are equal to the corresponding dy-
namic shares—the transport concentration and the degree of dryness [39,40]. Then, the 
following relationship applies in non-slip flows: 𝑣 = 𝑣/𝛼, and the final set of fundamen-
tal equations (appropriately momentum and continuity) is as follows: 𝜌 𝑑𝑑𝑡 𝑣𝛼 + 𝜕𝑝𝜕𝑥 + 2𝑅 𝜏 = 01𝑐 𝑑𝑝𝑑𝑡 + (𝜌 − 𝜌 ) 𝑑𝛼𝑑𝑡 + 2𝜌 𝑑𝜀𝑑𝑡 + 𝜌 𝜕𝜕𝑥 𝑣𝛼 = 0  (16)

The term 𝑣/𝛼 indicates the difference between the velocities of the liquid and vapor 
phase. 

2.2. Wall Shear Stress and Retarded Strain 
The wall shear stress in transient pipe flow can be calculated with the help of convo-

lutional theory. Zielke [41] for laminar flow and later Vardy-Brown [42] for turbulent flow 
presented an initial version of this equation. For homogeneous bubble flow, the mixture 
density should be taken into account: 𝜏 = | | + (𝑢) ∙ 𝑤 (𝑡 − 𝑢)𝑑𝑢 . (17)

The function 𝑤 (𝑡 − 𝑢) [-] is a so-called weighting function. In our work, this func-
tion is identical to the functions used in other cavitational and single-phase flow models. 
For detailed form and more information about weighting functions, please refer to paper 
[43].  

The numerical modified effective solution of the above convolution integral, which 
is used in this work, is based on the improved solution for single-phase flows [44,45]: 
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𝜏(𝑡 + ∆𝑡) ≈ ( ) ( )( ) + ∑ 𝐴 𝑦 (𝑡) + 𝜂𝐵 ( )( ) − ( )( ) + [1 − 𝜂]𝐶 ( )( ) − ( )( )( ∆ ) . (18)

where ∆t [s] is a constant time step in the method of characteristics; 𝜇  is Dukler’s [46] 
two-phase mixture dynamic viscosity [Pa·s], and 𝜂 = .( ).( ) ; 𝐴 = 𝑒 ; 𝐵 = [1 − 𝐴 ]; 𝐶 = 𝐴 𝐵 . (19)

The 𝑚  and 𝑛  coefficients are determined from the analytical formulas presented 
in a recent paper [47], and Δ�̂� = ∆𝑡 is dimensionless time. In the case of turbulent 
flow, these coefficients must be scaled in accordance with the guidelines presented in pa-
per [48]. 

The next step is to evaluate the partial derivative of retarded strain using a convolu-
tion integral. According to [49,50], the retarded strain can be written in a simpler form 
than the original one [38]: 𝜕𝜀 (𝑡)𝜕𝑡 = 𝐷2𝑒 𝜉 𝜕𝜕𝑡 (𝑝(𝑢) − 𝑝(0)) ∙ 𝐽𝑇 𝑒 𝑑𝑢 = Ξ2 𝜕𝑝(𝑢)𝜕𝑡 ∙ 𝑤 (𝑡 − 𝑢)𝑑𝑢 (20)

where 𝑤 (𝑡 − 𝑢) is the creep weighting function [Pa−1·s−1]; Ji is the creep compliance of the 
i spring of the Kelvin–Voigt element [Pa−1]; Ti is the retardation time of the dashpot of i-
element [s]. 

Worth noting is the analogy of the above convolution integral with the convolutional 

integral representing the wall shear stress ∑ 𝑒 = 𝑤 (𝑡 − 𝑢). This analogy made it 
possible to solve numerically the above convolution integral in an effective manner using 
Schohl’s effective scheme [51]: (𝑡 + ∆𝑡) ≈ ∑ 𝑧 (𝑡) ∙ 𝑒 ∆ + ∆ 1 − 𝑒 ∆ 𝑝( ∆ ) − 𝑝( )( ∆ )

. (21)

The above equation (Equation (21)) may be written in a simpler form: 𝜕𝜀𝜕𝑡 (𝑡 + ∆𝑡) = 𝑝( ∆ )𝐹 − 𝐺(𝑡) Ξ2 (22)

where: 𝐹 = ∑ 𝑀  ; 𝐺(𝑡) = ∑ 𝑀 𝑝( ) − 𝑧 (𝑡) ∙ 𝑁 ; 𝑀 = ∆ 1 − 𝑒 ∆
; 𝑁 = 𝑒 ∆

. (23)

The use of convolution integrals (Equations (17) and (20)) in the basic system of Equa-
tion (16) results in: 𝜌 + + | | + (𝑢) ∙ 𝑤 (𝑡 − 𝑢)𝑑𝑢 = 0+ ( ) + + Ξ ( ) ∙ 𝑤 (𝑡 − 𝑢)𝑑𝑢 = 0 . (24)

2.3. Numerical Solution for Inner Nodes 
The convective terms are less important and are omitted from the main analyzed set 

of equations. This procedure will ensure that the use of interpolation, which greatly affects 
the numerical solution [2], is excluded. The simplified equations of continuity and mo-
mentum are identified as 𝐿  and 𝐿 , respectively: 
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𝐿 = 𝜕𝑝𝜕𝑡 + 𝑐 (𝜌 − 𝜌 ) 𝜕𝛼𝜕𝑡 + 2𝜌 𝑐 𝜕𝜀𝜕𝑡 + 𝜌 𝑐 𝜕𝜕𝑥 𝑣𝛼 = 0 (25)𝐿 = + + 𝜏 = 0. (26)

Combining linearly 𝐿 = 𝜓𝐿 + 𝐿 , these equations by the unknown multiplier 𝜓 
gives: 𝜓 + + + 𝜓𝜌 𝑐 + 𝜓𝑐 (𝜌 − 𝜌 ) + 2𝜓𝜌 𝑐 + 𝜏 = 0. (27)

By examination of the above Equation (27) with the definition of total derivatives, it 
can be noted that with: 𝑑𝑥𝑑𝑡 = 1𝜌 𝜓 = 𝜓𝜌 𝑐  (28)

it becomes the ordinary differential equation: 𝜓 + + 𝜓𝑐 (𝜌 − 𝜌 ) + 2𝜓𝜌 𝑐 + 𝜏 = 0. (29)

The solution of Equation (28) yields two particular values of 𝜓, 𝜓 = ± . (30)

By inserting the above values into Equation (28) the particular relation between 𝑥 
and 𝑡 is given as follows: = ±𝑐. (31)

This leads to a set of two equations on positive 𝐶  and negative 𝐶  characteristic 
lines:  𝐶 : 1𝑐𝜌 𝑑𝑝𝑑𝑡 + 𝑑𝑑𝑡 𝑣𝛼 + 𝑐𝜌 (𝜌 − 𝜌 ) 𝜕𝛼𝜕𝑡 + 2𝑐 𝜕𝜀𝜕𝑡 + 2𝜌 𝑅 𝜏 = 0 (32)𝐶 : − + − (𝜌 − 𝜌 ) − 2𝑐 + 𝜏 = 0. (33)

From Equation (2), it follows that: 𝛼 = . (34)

Considering the above Equation (34), the third term on the left-hand side in Equa-
tions (32) and (33) can take the form: (𝜌 − 𝜌 ) = (𝜌 − 𝜌 ) = (𝜌 − 𝜌 ) = 𝜌 . (35)

Shu [8] writes the partial derivative of the density of the mixture in a logarithmic 
form: 𝜌 = 𝑐 𝑙𝑛 . (36)

Note that under the logarithm, we have the division of 𝜌  by 𝜌 , but the 𝜌  could 
be exchanged to any other constant, and the above equation would be satisfied anyway. 

⎩⎪⎨
⎪⎧ 1𝑐𝜌 ∆(𝑝 − 𝜅𝑝 )∆𝑡 + ∆∆𝑡 𝑣𝛼 + 𝑐 ∆∆𝑡 𝑙𝑛 𝜌𝜌 + 2𝑐 𝜕𝜀𝜕𝑡 + 2𝜌 𝑅 (𝜏 ) = 0

𝑓𝑜𝑟 𝑑𝑥𝑑𝑡 = 𝑐  (37)



Energies 2021, 14, 6756 9 of 22 
 

 

⎩⎪⎨
⎪⎧− 1𝑐𝜌 ∆(𝑝 − 𝜅𝑝 )∆𝑡 + ∆∆𝑡 𝑣𝛼 − 𝑐 ∆∆𝑡 𝜌𝜌 − 2𝑐 𝜕𝜀𝜕𝑡 + 2𝜌 𝑅 (𝜏 ) = 0

𝑓𝑜𝑟 𝑑𝑥𝑑𝑡 = −𝑐  (38)

where 𝜅 = 1 + 𝑐 𝜌 ΞFΔt. 
From both characteristics at the inner node, the following explicit system of equations 

is obtained: 

⎩⎪⎨
⎪⎧ ( ) ( )∆ + ∆ + ∆ 𝑙𝑛 − 𝑙𝑛 + 2𝑐 + (𝜏 ) = 0

− ( ) ( )∆ + ∆ − ∆ 𝑙𝑛 − 𝑙𝑛 − 2𝑐 + (𝜏 ) = 0. (39)

The system can be further rewritten after introducing: 2𝑐 𝜕𝜀𝜕𝑡 = 𝑝 Ξ𝑐𝐹 − Ξ𝑐𝐺 (𝑡) (40)

2𝜌 𝑅 (𝜏 ) = 𝑓 𝑣 |𝑣 |4𝑅𝛼 + 4𝜈𝑅 𝐴 𝑦 + 𝜂𝐵 𝑣𝛼 − 𝑣𝛼 + [1 − 𝜂]𝐶 𝑣𝛼 − 𝑣𝛼 = 𝜆 𝑣 |𝑣 |4𝑅𝛼  (41)

2𝜌 𝑅 (𝜏 ) = 𝑓 𝑣 |𝑣 |4𝑅𝛼 + 4𝜈𝑅 𝐴 𝑦 + 𝜂𝐵 𝑣𝛼 − 𝑣𝛼 + [1 − 𝜂]𝐶 𝑣𝛼 − 𝑣𝛼 = 𝜆 𝑣 |𝑣 |4𝑅𝛼  (42)

where:  

⎩⎪⎪⎨
⎪⎪⎧ 𝜆 = 𝑓 + | | ∑ 𝐴 𝑦 + 𝜂𝐵 − + [1 − 𝜂]𝐶 −

𝜆 = 𝑓 + | | ∑ 𝐴 𝑦 + 𝜂𝐵 − + [1 − 𝜂]𝐶 − . (43)

By transforming the system of Equation (39) in a way that the parameters searched 
for a given inner node D of the characteristics grid (Figure 1) remain on the left-hand side, 
one obtains: 𝑝𝑐𝜌 − 𝜅𝑝𝑐𝜌 + 𝑣𝛼 + 𝑐2 𝑙𝑛 𝜌𝜌 + 𝑝 𝑐ΞFΔt = 𝐶− 𝑝𝑐𝜌 + 𝜅𝑝𝑐𝜌 + 𝑣𝛼 − 𝑐2 𝑙𝑛 𝜌𝜌 − 𝑝 𝑐ΞFΔt = 𝐶   (44)

where 𝐶  as well 𝐶  are time-dependent functions that are iteratively calculated using 
the values known from the previous numerical time step: 𝐶 = + − | | + 𝑙𝑛 + 𝐺 (𝑡)ΞcΔt𝐶 = − − | | − 𝑙𝑛 − 𝐺 (𝑡)ΞcΔt. (45)

From the above equations, the final solutions for the inner node D (Figure 1) of the 
grid of characteristics are obtained. The solution for the mean velocity at cross-section is: 𝑣 = 𝛼 (𝐶 + 𝐶 )2  (46)

and the solution for the pressure is: 
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𝑝 = ( ) + 𝑝 − 𝑙𝑛 . (47)

 
Figure 1. Rectangular grid in the method of characteristics. 

The analysis of the above formulas shows that in order for 𝑝 > 𝑝  (note that then 𝜌 = 𝜌 ), the condition that 𝐶 ≥ 𝐶  must be met. When 𝐶 ≥ 𝐶 , there is no cavitation 
and 𝛼 = 1; 𝑝 = ( ) + 𝑝 . Otherwise, when 𝐶 < 𝐶  cavitation occurs, then 𝑝 =𝑝  and 𝜌 = 𝜌 𝑒 . 

Having the instantaneous value of the mixture density 𝜌 , the vapor density 𝜌 , 
and the liquid density 𝜌 , the instantaneous value of the liquid phase concentration 𝛼  
should be determined from the formula (Equation (2)): 

𝛼 = . (48)

2.4. Boundary conditions 
The next step is to solve the boundary conditions. According to Figure 1, the instan-

taneous closing valve of an RVP system is at the left-hand side of the system (x = 0). The 
valve boundary condition is derived from the negative 𝐶  characteristic: − + + − 𝑙𝑛 − 𝑝 𝑐𝛯𝐹𝛥𝑡 = 𝐶𝐶 = − − | | − 𝑙𝑛 − 𝐺 (𝑡)𝛯𝑐𝛥𝑡. (49)

Please note that the value of 𝐶  is based only on known values from the previous 
time steps. The velocity at the valve section for time 𝑡 > 0 has zero value, i.e., 𝑣 =0 (closed valve). The above Equation (49) takes the form: 𝑝 1 + 𝑐 𝜌 ΞFΔt = −𝑐𝜌 𝐶 + 𝜅𝑝 − 𝑐 𝜌2 𝑙𝑛 𝜌𝜌  (50)

which finally reduces to: 

𝑝 = 𝑝 − . (51)

When the pressure 𝑝  at this boundary is higher than the vapor pressure 𝑝 , then 
the natural logarithm is equal to 0 as 𝜌 = 𝜌 ; this means that there is no cavitation when 𝐶 < 0, and the pressure at the valve section can be calculated from the following equa-
tion: 
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𝑝 = 𝑝 − . (52)

Otherwise, when 𝐶 ≥ 0 and 𝑝 = 𝑝 , then the bubble mixture density and volu-
metric fraction of the liquid, respectively, should be calculated as follows: 𝜌 = 𝜌 𝑒  and 𝛼 = . (53)

Next, the dynamic viscosity of the homogeneous bubble mixture using Dukler’s for-
mula [46] should be calculated: 𝜇 = 𝛼 𝜇 + (1 − 𝛼 )𝜇 . (54)

At the opposite end (x = L) of the RPV system, Figure 1 is the reservoir. At the cross-
section connecting the pipe with the reservoir, the pressure is assumed to be of constant 
value, i.e., 𝑝 = 𝑝  during the complete transient event associated with the analyzed wa-
ter hammer phenomenon. As the pressure does not pulsate at this cross-section, the re-
tarded strain is neglected here. The final equation for the velocity pulsation at this section 
in which the pressure is always higher than the vapor pressure 𝑝 > 𝑝  is: 𝑣 = + + 𝑙𝑛 − 𝜏 . (55)

3. Experimental Verification of New Model 
In order to demonstrate the effectiveness of the newly presented model, in this sec-

tion, the results of simulation tests will be compared with the experimental results pre-
sented by Güney [10]. The Güney experimental test stand located at the INSA research 
center in Lyon (France) was a simple system consisting of three main components: reser-
voir–pipe–valve (Figure 2). 

 
Figure 2. Schematic diagram of Güney’s experimental test stand: 1—booster pump, 2—temperature stabilization system, 
3—test stand supply pump, 4—thermometer, 5—reservoir, 6—LDPE pipe, 7, 8, and 9—pressure transducers, 10—quick-
closing valve. 

In the analyzed RPV system, in steady flow, water flowed directly into the atmos-
phere. The pipe had a total length of L = 43.1 m and an internal diameter D = 0.0416 m (the 
wall thickness of the pipe was e = 0.0042 m). The test pipe was made of low-density poly-
ethylene (LDPE). The experimental tests of the water hammer forced by the sudden (mo-
mentary) closure of the valve (shutting off the flow) have been carried out for five different 
temperatures of the flowing liquid (water). In Table 1, the parameters required to simulate 
the analyzed unsteady flows with cavitation are tabulated. It can be seen that although 
the initial flow velocity was similar, due to the change in viscosity, the value of the 

L=43.1 m
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Reynolds number increased with the temperature increase (almost twice as high for 𝐶𝑎𝑠𝑒 05: 𝑅𝑒 ≈ 82000 than for 𝐶𝑎𝑠𝑒 01: 𝑅𝑒 ≈ 45500). After the temperature change, 
not only do the parameters related to the flowing liquid change (Table 1) but also the 
values of the parameters representing the mechanical properties of the pipe; thus, it is 
necessary to compare their values (𝐽 creep compliances and 𝜏 retardation time coeffi-
cients values are presented in Table 2).  

Table 1. Güney cases details. 𝐂𝐚𝐬𝐞 𝑻 [°𝐂] 𝒗𝟎 [𝐦 𝐬⁄ ] 𝑹𝒆𝟎 [−] 𝒄  [𝐦/𝐬] 𝒑𝑹  [𝐏𝐚] 𝒑𝒗  [𝐏𝐚] 𝑲𝒍  [𝐏𝐚] 𝝆𝒍  [𝐤𝐠/𝐦𝟑] 𝝁𝒍  [𝐏𝐚 ∙ 𝐬] 𝝆𝒗  [𝐤𝐠/𝐦𝟑] 𝝁𝒗  [𝐏𝐚 ∙ 𝐬] 
01 13.8 1.28 45,511 305 1.2955·105 1570 2.14·109 999.3 0.0012 0.012 9.6·10−6 
02 25 1.37 63,892 265 1.3056·105 3160 2.24·109 997.1 8.9·10−4 0.023 9.9·10−6 
03 31 1.34 71,102 247 1.3041·105 4480 2.27·109 995.3 7.8·10−4 0.032 1·10−5 
04 35 1.37 78,827 235 1.3038·105 5610 2.285·109 994.1 7.2·10−4 0.040 1.02·10−5 
05 38.5 1.33 81,967 215 1.2985·105 6790 2.295·109 992.6 6.7·10−4 0.047 1.03·10−5 

Güney used the time–temperature superposition principle (also known as time–tem-
perature reducibility) to derive his creep compliance functions for different temperatures. 
During initial simulations, complete Güney creep compliance functions were used (three 
exponential terms) that can be found in the works [10,52]. As the initially obtained simu-
lation results indicated that this creep function is a source of simulation error, we had a 
detailed look at the original coefficients. We noticed that the corresponding creep compli-
ance values of small retardation times (𝜏 < 1.5 ∙ 10  [𝑠]–original 𝐽  and 𝜏  coefficients) 
are out of the frequency range of the used dynamic viscoelastometer RHEOVIBRON. Fil-
tering out this coefficient for small retardation times (rejecting from the analysis original 𝐽  and 𝜏  coefficients without changing all other experimentally defined creep coeffi-
cients) helped to receive corrected comparisons results. 
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Table 2. Creep compliance function coefficients. 

Case 𝑻 [℃] 𝑱𝟎 [𝐏𝐚 𝟏] 𝑱𝟏 [𝐏𝐚 𝟏] 𝑱𝟐 [𝐏𝐚 𝟏] 𝝉𝟏 [𝐬] 𝝉𝟐 [𝐬] 
01 13.8 1.071·10−9 0.637·10−9 0.871·10−9 0.0166 1.747 
02 25 1.438·10−9 1.046·10−9 1.237·10−9 0.0222 1.864 
03 31 1.665·10−9 1.397·10−9 1.628·10−9 0.0221 1.822 
04 35 1.847·10−9 1.797·10−9 2.349·10−9 0.0265 2.392 
05 38.5 2.219·10−9 2.097·10−9 3.570·10−9 0.0347 3.077 𝐽 —creep-compliance coefficients; 𝜏 —retardation times. 

The creep functions for LDPE have different characteristics (Figure 3) than those for 
the typical currently used plastic material, namely HDPE. The LDPE material has higher 
values of creep compliance than the HDPE material. Additionally, we may see (Figure 3) 
that an increase in temperature increases the creep compliance values. The HDPE traces 
which are presented for comparison in Figure 3 were obtained experimentally by Covas 
et al. [22]. 

 
Figure 3. Creep functions for two different PE pipes. 

The pressure wave speeds were estimated based on the empirically observed dura-
tion of the first pressure amplitudes. Their values summarized in Table 1 enabled the de-
termination of 𝐽  (see Table 2) from the transformed formula of the pressure wave speed: 𝐽 = 1𝜌Ξ𝑐 − 1𝐾 Ξ (56)

where 𝜉 = 0.97;  Ξ = 𝜉 = 9.61. 
The method of characteristics was used with a constant number of reaches N = 64. 

The selected number of reaches meets the computational compliance criteria discussed in 
paper [53], i.e., N > 10. Extra simulation studies performed during the preparation of this 
paper whose purpose was to investigate the impact of the number of reaches showed that 
there are no significant differences between the results of N = 16, 32, and the selected 64. 
A finer grid is favorable in the case of instantaneous valve closure. The time steps are 
calculated on the basis of the Courant–Friedrichs–Lewy (CFL) stability condition 𝐶 =( ∙ )  ≤  1. In order to keep the value of the CFL number equal to one, appropriate values 
of the time steps should be determined from Δ𝑡 = Δ𝑥/𝑐 (wave speeds c are given in Table 
1). In the MOC Δ𝑥 = 𝐿/𝑁 i.e., Δ𝑥 ≈ 0.67 m. Then, the following time steps are obtained 
for the five cases: ∆𝑡 = 0.0022 s; ∆𝑡 = 0.0025 s; ∆𝑡 = 0.0027 s; ∆𝑡 = 0.0029 s; 
and ∆𝑡 = 0.0031 s, respectively. The results of the simulation tests compared with the 
experimental data are presented in Figure 4. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 4. Computed and measured results for different cases: (a) Case 01 (13.8 ℃); (b) Case 02 (25 ℃); (c) Case 03 (31 ℃); 
(d) Case 04 (35 ℃); (e) Case 05 (38.5 ℃). 

The qualitative analysis of the obtained results (Figure 4) indicates the following: 
- In systems based on plastic pipes, as the temperature of the flowing medium in-

creases, the maximum value of the pressure at the first amplitudes decreases (assum-
ing a similar value of the initial velocity in the steady flow just before the quick valve 
closure). The above is due to the decrease in pressure wave speed with increasing 
temperature; 
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- The decrease of pressure wave speed caused by the increase in temperature is also 
responsible for the change in the frequency of the water hammer itself. Based on the 
research carried out, one may notice that for a higher value of the pressure wave 
speed, the number of pressure amplitudes appearing in the same time interval in-
creases (Figure 4a—five amplitudes), while for a small value, this amount is smaller 
(Figure 4d and Figure 4e—four amplitudes); 

- The omission of unsteady hydraulic resistances negatively affects the modeled wave-
forms, which are overestimated starting from the second amplitudes (Figure 4a–e). 
Large discrepancies are visible in the modeled pressures at the peaks and at the val-
leys of these pressure amplitudes; 

- The modified proposed numerical solution modeled the first peak of pressure visible 
at the beginning of all tops of first amplitudes (Figure 5a) as well the small peak at 
the beginning of second amplitudes (Figure 5b). This proves the physics of the ana-
lyzed phenomena; 

- In 𝐶𝑎𝑠𝑒𝑠 03, 04, and 05, where only single column separation takes place (after the 
first amplitude), it can be seen that the phase shift of the simulated pressure increased 
over time. This behavior can be explained by the fact that in a real situation, the pres-
sure wave speed does not remain constant during the entire transient event but ra-
ther slightly changes. The change of the pressure wave speed is not included in the 
current version of the mathematical model, as it would force the use of interpolation, 
which would introduce additional numerical damping [2]; 

- Although qualitative studies indicate the advantage of the model taking into account 
unsteady friction, it is necessary to carry out quantitative studies to confirm the above 
hypothesis. Such research will be carried out in the next Chapter 4; 

- The largest model discrepancies occurred in the runs carried out for 𝐶𝑎𝑠𝑒𝑠 02, 03, 04, and 05 at the top of the first amplitude. In the experimental studies 
in the final phase of the pressure increase (first amplitudes), no increase in pressure 
was observed as in 𝐶𝑎𝑠𝑒 01 (Figure 4a), while from what we can see in Figure 4b to 
Figure 4e, such an increase was modeled by the numerical model. This increase was 
not influenced by the way of taking into account skin friction (quasi-steady or un-
steady resistances); hence, the applied creep functions were responsible for them. 

  
(a) (b) 

Figure 5. Enlargement of (a) top of first amplitude and (b) early stage of second amplitude. 

4. Quantitative Analysis of Results 
In this section, quantitative research is performed whose role is to define and deter-

mine important criteria parameters of the analyzed flow. It is difficult to find any favora-
ble quantitative method in the literature on the subject of transient pipe flows. Here, we 
present a new methodology that results in two criteria parameters. The role of the final 
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qualitative parameters is to determine the compliance of the simulated histories with re-
spect to the experimental ones in a simplified mathematical way. 

A MATLAB subprogram was written to search for maxima (peaks) and minimum 
values of pressure histories and their occurrence times (calculated from the beginning of 
the analyzed transient state). In a demonstrative way, Figure 6 illustrates the working idea 
of this proposed “collecting” subprogram. As can be seen, the pressure drops to the satu-
rated vapor pressure were not taken into account, as the final results would be false. Ad-
ditionally, when determining the time compliance, the time of the first pressure peak 𝑡  
at the first amplitude was omitted, as it would also cause the final result to be distorted. 

The pressure compliance parameter determining the compliance of the maximum 
and minimum simulated pressures is calculated by the following formula: 

𝐸 = ∑ 𝑝 , − 𝑝 ,𝑝 ,𝑘 ∙ 100% (57)

where 𝑝 , —simulated maximal and minimal pressures and 𝑝 , —experimentally pre-
dicted maximal and minimal pressures 

The time compliance parameter that determines the time fit of subsequent simulated 
amplitudes was calculated using the following formula: 

𝐸 = ∑ 𝑡 , − 𝑡 ,𝑡 ,𝑘 − 1 ∙ 100% (58)

where 𝑡 , —times of occurrence of maximal and minimal simulated pressures and 𝑡 , —
experimentally observed times of maximal and minimal pressures (note that times 𝑡 ,  
and 𝑡 ,  representing the maximum at first amplitude are not taken into account, because 
in some cases, their fit could distort the whole analysis). 

 
Figure 6. Selection of maximal and minimal pressures and their times of occurrence. 

The degree of simulation compatibility increases with decreasing values of the above 
coefficients. In Table 3, the complete quantitative results of the 𝐸  and 𝐸  parameters cal-
culated for all comparative studies carried out in this work are summarized. 
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Table 3. Quantitative results. 

𝐂𝐚𝐬𝐞 𝑻 [℃] 𝒗𝟎 [𝐦 𝐬⁄ ] 𝑹𝒆𝟎 [−] 𝐔𝐧𝐬𝐭𝐞𝐚𝐝𝐲 𝐅𝐫𝐢𝐜𝐭𝐢𝐨𝐧 (𝐔𝐅) 𝐐𝐮𝐚𝐬𝐢 − 𝐒𝐭𝐞𝐚𝐝𝐲  𝐅𝐫𝐢𝐜𝐭𝐢𝐨𝐧 (𝐐𝐒𝐅) ∆𝑪𝒂𝒗𝑬𝑿𝑷  [𝐬] ∆𝑪𝒂𝒗𝑼𝑭  [𝐬] ∆𝑪𝒂𝒗𝑸𝑺𝑭  [𝐬] 𝑬𝒑 [%] 𝑬𝒕 [%] 𝑬𝒑 [%] 𝑬𝒕 [%] 
01 13.8 1.28 45511 8.39 0.70 23.51 0.39 0.74 0.77 0.83 
02 25 1.37 63892 5.32 0.49 15.15 0.31 0.59 0.61 0.72 
03 31 1.34 71102 6.76 1.02 23.17 0.88 0.45 0.46 0.53 
04 35 1.37 78827 8.57 0.90 18.04 0.62 0.43 0.44 0.47 
05 38.5 1.33 81967 4.38 1.62 10.46 1.36 0.38 0.38 0.42 

The results of quantitative research indicate the following: 
- Unsteady friction losses contribute to a significant reduction of pressure compliance 

errors (parameter 𝐸 —values of simulated pressures). When only quasi-steady re-
sistances were taken into account, the average error 𝐸  from all the tests carried out 
was about 18%, while when the model of UF losses was taken into account, then the 
average error 𝐸  was about 6.5%; i.e., almost three times smaller; 

- The unsteady friction also influences the second analyzed parameter, i.e., the phase 
compatibility 𝐸 . However, in this case, there was a slight increase in the value of the 
time fit error of the modeled waveforms. When the quasi-steady nature of the re-
sistance was taken into account, the average error 𝐸  was 0.71%, while when the un-
steady nature of the resistance was taken into account, the average error 𝐸  was 
0.95%. The difference is very small and can be neglected; however, it is recommended 
to use models of unsteady friction when the experimentally obtained creep functions 
are used during modeling; 

- The deterioration of the quantitative parameter 𝐸 , which was noted in the previous 
paragraph, after taking into account the unsteady hydraulic resistances, prompted 
us to analyze another quantitative parameter, which is the duration of the cavitation 
phenomenon at the analyzed cross-section (cross-section at the valve). From the data 
presented in Table 3 (∆𝐶𝑎𝑣 ), it can be seen that the duration of the cavitation phe-
nomenon at the cross-section at the valve decreased with increasing temperature (de-
creasing the speed of pressure wave propagation). It can also be seen that the numer-
ical model which takes into account unsteady friction predicts the duration of cavi-
tation areas slightly longer than it was in the experiments. The quasi-steady re-
sistance model overestimated the duration of cavitation quite significantly. 

5. Conclusions 
The paper presents a modified unsteady discrete bubble cavity model DBCM. The 

new model is developed in a very simple form, which makes it easy for implementation 
in commercial programs for unsteady pipe flow analysis. The new model takes into ac-
count three very important phenomena: unsteady wall shear stress, vaporous cavitation, 
and pipe-wall retarded strain. The latter mentioned phenomenon occurs in plastic pipes. 

The conducted comparative studies have shown that with the help of the presented 
model, it is possible to simulate pressure and velocity waveforms in which vapor areas 
appear as a result of the cavitation phenomenon in plastic pipes. It was noticed that the 
influence of unsteady friction was much smaller than the influence of retarded strain. An 
innovative method of calculating the convolutional integral describing the retarded strain 
was applied by using the analogy to the convolutional integral defining the wall shear 
stress (Schohl’s method). Taking into account the commonly known boundary conditions 
related to the method of characteristics enables the use of the novel model in complex 
networks: water supply, oil hydraulics, heating, etc. 

The modified solution is an alternative to the two commonly used transient cavitat-
ing pipe flow models, namely the DGCM (discrete gas cavity model) and the DVCM 
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(discrete vapor cavity model). In our future work, we are planning to execute broad com-
parisons of the presented new model with the existing ones. 

The use of the experimentally determined creep functions (obtained by Güney) 
showed that such functions can be an alternative to the calibration methods commonly 
developed today. This indicates that the creation of the so-called “maps” of creep function 
curves for various polymeric materials currently used in the world for pressure pipes will 
significantly help designers at the design stage and will enable the study of the most dan-
gerous unsteady cases “a priori”. Presentation of such “maps” obtained for different tem-
peratures should be a priority of the current scientific research. 
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Nomenclature 
A pipe cross-sectional area (m2) 
Ai, Bi and Ci unsteady friction coefficients (-) 
D pipe internal diameter (m) 
E pipe modulus of elasticity (Pa) 
Ep and Et pressure and time compliance parameters (%) 
J0=1/E instantaneous creep compliance (Pa−1) 
Ji  creep compliance of the i-th Kelvin-Voigt element (Pa−1) 
Kl bulk modulus of liquid phase (Pa) 
Kv bulk modulus of vapor phase (Pa) 
L pipe length (m) 
N number of computational reaches (-) 
R pipe internal radius (m) 
T temperature in Celsius degrees (oC) 
Ti the retardation time of i-th Kelvin-Voigt element (s) 
c pressure wave speed (m/s) 
e pipe-wall thickness (m) 
f Darcy–Weisbach friction factor (-) 
g acceleration due to gravity (m/s2) 
mi and ni frictional weighting function coefficients (-) 
p pressure (Pa) 
pv saturated vapor pressure (Pa) 
pR reservoir pressure (Pa) 
Re0 initial Reynolds number (-) 
t time (s) 
u dummy variable (s) 
wUF weighting function of unsteady friction (-) 
wJ weighting function of creep (Pa−1·s−1) 
v average flow velocity (m/s) 
vm mixture velocity (m/s) 
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v0 initial liquid velocity (m/s) 
x space coordinate (m) 
yi time-dependent velocity history effect (m/s) 
zi time-dependent strain history effect (s−1) 
α volumetric fraction of liquid phase (-) 
Δt numerical time step (s) 
Δ�̂� dimensionless time step (-) 
Δx numerical spatial step (m) 
εr retarded strain (-) 
η correction factor of unsteady friction (-) 
θ pipe slope angle (o) 
λ transient friction factor (-) 
μl liquid dynamic viscosity (Pa·s) 
μm mixture dynamic viscosity (Pa·s) 
μv vapor dynamic viscosity (Pa·s) 
νl kinematic viscosity of liquid (m2/s) 
νm kinematic viscosity of liquid-vapor mixture (m2/s) 
νv kinematic viscosity of vapor (m2/s) 
ξ pipe restraint factor (-) 
Ξ enhanced pipe restraint factor (-) 
ρl density of liquid phase (kg/m3) 
ρm mixture density (kg/m3) 
ρv density of vapor phase (kg/m3) 𝜎   elastic component of the hoop stress (Pa) 
τm mixture wall shear stress (Pa) 𝜓  MOC multiplier (m·Pa−1·s−1) 

Abbreviations 
CAV cavitation 
CFL Courant–Friedrichs–Lewy condition 
DACM discrete Adamkowski cavity model 
DBCM discrete bubble cavity model 
DGCM discrete gas cavity model 
DVCM discrete vapor cavity model 
EXP experimental 
FSI fluid structure interaction 
HDPE high-density polyethylene 
LDPE low-density polyethylene 
MOC method of characteristics 
ODE ordinary differential equation 
PDE partial differential equation 
QSF quasi-steady friction 
RS retarded strain 
SIM simulation 
UF unsteady friction 
VOF volume of fluid method 

Appendix A 
The total derivative of strain represents a derivative of pipe inner diameter changes 

[38]: = = . (A1)

These changes in plastic pipes differ from those reported in elastic pipes. The relation 
between the cross-section derivative and strain derivative is: 
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= = = = = 2𝐴 . (A2)

The circumferential strain can be decomposed into an instantaneous elastic strain 𝜀  
and a retarded strain 𝜀 : 𝜀 = 𝜀 + 𝜀 . (A3)

Using the above decomposition (Equation (A3)) in Equation (A2) gives: = 2𝐴 + . (A4)

Typically, the instantaneous strain 𝜀 , which is assumed to be linear–elastic, can be 
related to the hoop stress as follows: 𝜀 = 𝜉𝜎𝐸  (A5)

where 𝜎 —elastic component of the hoop stress. 
The hoop stress is also related to the fluid pressure and the ratio between the pipe 

inner diameter and wall thickness: 𝜎 = . (A6)

Let us take the derivative of the above Equation (A6): = + . (A7)

The derivative of the elastic strain component (Equation (A5)) can be written with 
the help of Equation (A7): = = 𝑝 + 𝐷 = 𝑝𝐷 + 𝐷 . (A8)

Finally, with help of Equation (A1), one gets: = 𝑝 + . (A9)

After rearrangement: = . (A10)

Introducing Equation (A10) into Equation (A4) results in: = + 2𝐴 . (A11)

Since in most practical applications 𝑝/2 ≪ 𝐸/Ξ, then: = + 2 . (A12)

This equation has been used in the manuscript during the derivation of the continuity 
equation—see Equation (11). 
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