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Abstract: A dynamic viscosity function plays an important role in water hammer modeling. It is
responsible for dispersion and decay of pressure and velocity histories. In this paper, a novel method
for inverse Laplace transform of this complicated function being the square root of the ratio of Bessel
functions of zero and second order is presented. The obtained time domain solutions are dependent
on infinite exponential series and Calogero–Ahmed summation formulas. Both of these functions
are based on zeros of Bessel functions. An analytical inverse will help in the near future to derive a
complete analytical solution of this unsolved mathematical problem concerning the water hammer
phenomenon. One can next present a simplified approximate form of this solution. It will allow
us to correctly simulate water hammer events in large ranges of water hammer number, e.g., in
oil–hydraulic systems. A complete analytical solution is essential to prevent pipeline failures while
still designing the pipe network, as well as to monitor sensitive sections of hydraulic systems on a
continuous basis (e.g., against possible overpressures, cavitation, and leaks that may occur). The
presented solution has a high mathematical value because the inverse Laplace transforms of square
roots from the ratios of other Bessel functions can be found in a similar way.

Keywords: inverse Laplace transform; analytical solution; water hammer; dynamic viscosity function;
fluid dynamics; pipe flow; Calogero–Ahmed sums

1. Introduction

Water hammer is propagation of pressure waves in liquid-filled pipelines due to the
change of flow velocity. The phenomenon of water hammer has fascinated generations of
researchers in academia and industry. The high interest is reflected in an increasing number
of scientific works on this subject. In most works [1–3], numerical solutions are used when
analyzing this phenomenon. However, commonly used numerical methods have only been
verified experimentally over the years. Hence, an analytical method would be very useful.
It would enable the theoretical verification of these solutions in the full range of variability
of the basic flow parameters. A detailed review of the literature carried out in Reference [4]
indicated that a complete laminar flow analytical solution, which would correctly model
relatively short- and long-lasting water hammer events in the time domain, has still not
been presented (derived). Interestingly, such a solution is not known only for complex
systems, but also for the simplest hydraulic system, such as a pressure reservoir–pipe–valve
system (Figure 1).
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Figure 1. The reservoir–pipe–valve system.

As it has been found from the extensive review of the literature carried out for the
purposes of this work, there is relatively little work strictly related to the analytical modeling
of the water hammer phenomenon. Most of the theoretical work concerns solutions that
have been determined by solving only one of the water hammer equations (equation of
motion). Among such solutions, there are solutions for accelerated [5–9], decelerated [10],
reverse [11], pulsating [12,13], and other types of flows [14–19]. Relatively recently, new
solutions have been developed in which a variable viscosity has been introduced during
the duration of unsteady pipe flow [20,21], and with the help of newly derived methods,
the previously known laminar models can be extended to turbulent flows [22,23].

The pioneering research studies that concerned attempts to solve the system of equa-
tions of continuity and motion describing the problems of water hammer were the works
of Joukowsky [24] and Allievi [25]. These authors did not take into account the friction
forces; hence, they managed to obtain very simple analytical solutions. The first to become
interested in friction was Wood [26], who derived a number of Laplace solutions for basic
practical cases. His work was significantly expanded by Rich [27], who derived analytical
formulas in Laplace and time domain for water hammer cases analyzed by Wood, i.e., with
the assumption of no friction and friction varying in a quasi-steady manner. The unsteady
(frequency-dependent) nature of hydraulic resistance was noticed firstly by Iberall [28].
Unfortunately, despite numerous attempts to account for the frequency-dependent friction
into account in the late 1950s [29,30] and at the beginning of the 1960s [31,32], no one,
except for Holmboe [33,34] and Zielke [35,36], succeeded in presenting a solution in the
time domain. Unfortunately, Holmboe’s solution was too simplified, considering only the
first period of the water hammer event, and in addition, the author focused only on the
cross-section at the valve. On the other hand, Zielke presented an inverse Laplace transform
of the weighting function suitable for the numerical modeling of the wall shear stress, but
he did not work on a complete analytical solution. In the 1970s, an interesting solution was
presented by Karam [37,38]. This theoretical solution was limited to the step response at a
downstream end in a semi-infinite fluid line, combined with a two-port representation of a
finite line. The major feature introduced by Karam is two “filters” in a finite line model,
representing a convolution of their arbitrary inputs with the unit impulse response at the
equivalent location in a semi-infinite line. Fortunately, the promising Holmboe’s model has
received a decent correction by Muto and Takahashi [39].

The initial verification of this model presented in recent papers [4,40,41] showed its
enormous usefulness, especially in modeling water hammer occurring in water pipe flows
(relatively low-viscosity water supply systems). Unfortunately, in typical hydraulic systems,
i.e., wherever the working fluid is hydraulic oil (water hammer number 0.05 > Wh > 0.5 [42]),
computational compliance was not sufficient. Further attempts of the analytical solution
were undertaken by Sobey [43], whose solution, unfortunately, does not take into account
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the unsteady friction, and Mei-Jing [44,45]. The Mei-Jing model is the other promising
model. It has been recently corrected in Reference [4] so that the asymptotic pressure
values coincide with the expected final pressure value, even in the range of high values
of the water hammer number. In the same conference paper, the authors showed other
possible mathematical forms of this solution that turned out to be mathematically close to
Rich’s quasi-steady model. The analysis of the Mei-Jing model showed its great potential,
and, with a slight correction of the function describing the variability of the arguments,
it seems that it will be (in the near future) the most accurate approximate model of the
water hammer. It should be pointed out that recent research shows that the Atangana–
Baleanu derivative and the Laguerre polynomial can be used to define a new computational
technique for solving different types of differential equations [46]. The proposed scheme
gives better convergence to the actual solution than the results available in the literature. It
appears that use of the q-homotopy analysis algorithm in combination with the Laplace
transform [47] can be a powerful tool to find new approximate solutions for this problem. In
References [48–51], the authors proved that the finite element method is the most powerful
scheme to compute the solutions of highly nonlinear ODEs.

Analytical solutions originally developed by Holmboe [33,34], which were later modi-
fied by Muto-Takahashi [39], are also the basis for the analysis of dynamic pressure and
velocity waveforms, with the help of solutions commonly referred to as transmission line
modelling. Interesting papers in this regard have been published by Oldenburger and
Goodson [52], Brown [53], Viersma [54], and Ham [55]. These models are still very popular
today, as exemplified by works of Hullhender [56], Johnston et al. [57], Krus [58], and
Manhartsgruber [59]. The main role in these models plays the dynamic viscosity function.
The inverse Laplace transform of it is the subject of this work. The presented method of
the inverse Laplace transform of this physically important (in unsteady fluid pipe flow
problems) dynamic viscosity function being the square root of the ratios of Bessel functions
has not yet been presented in the literature (to the best knowledge of the authors). The
novel method, after the expansion, will be helpful in finding similar inverse transforms
from fractional ratios of Bessel functions.

Before we derive a new inverse Laplace solution, we briefly describe the problems of
water hammer modeling. The necessary boundary conditions, which enabled Holmboe [33]
to solve the problem in the Laplace domain, are here formulated. The frequency domain
pressure solution is enhanced with the solution for the second basic parameter, i.e., the flow
velocity. The complexity of a complete Laplace solution is the effect of nesting a square root
of ratios of Bessel-based function in the arguments of hyperbolic functions. These nested
functions are the main source accounting for the lack of a specific time domain analytical
solution. The aim of this work is to show some new forms of the existing solutions from
which it is possible to define a complete analytical solution in the Laplace domain. The
presented solutions have not been discussed and published before.

Our next step is finding an inverse Laplace transform of the dynamic viscosity function.
The analytical time domain form of this function has not been investigated before. This
dynamic viscosity function plays the most important role in the presented final solutions
because it is responsible for dispersion and decay of pressure and velocity histories. A
novel double infinite formulation for the dynamic viscosity function is derived. Inverse
Laplace transform is performed with the help of the convolutional integrals’ technique. In
the new time domain solution, one can find a new type of unknown polynomial that is
the result of the use of Calogero–Ahmed identities [60–62] for infinite series in the time
domain, based on zeros of Bessel functions. In the near future, the novel solution will be
used to find a complete analytical solution for any type of flow found in the analysis of
unsteady pipe flows.

2. Water Hammer Equations

The equations that describe the water hammer phenomenon occurring in the simplest
system presented in Figure 1 for the case of sudden valve closure are partial differential
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equations of the hyperbolic type. Holmboe [33], neglecting the dispersive term ∂2v
∂x2 , wrote

the momentum equation in axial direction as follows:

∂v
∂t

= −1
ρ

∂p
∂x

+
ν

r
∂

∂r

(
r

∂v
∂r

)
, (1)

where v = v(x, r, t), and p = p(x, t).
The averaged continuity equation was written by Holmboe as follows:

∂p
∂t

+ ρc2 ∂v
∂x

= 0. (2)

In the above continuity equation, the radial dependence was eliminated:[
v
p

]
=

1
πR2

∫ R

0
2πr

[
v
p

]
dr, (3)

and the mean quantities of pressure p and velocity v were defined.
A typical phenomenon of water hammer takes place when the fluid flow is suddenly

blocked (e.g., by the sudden closing of the valve (see Figure 1) at the cross-section x = 0),
and then intense pressure pulsations occur with values significantly exceeding the values
recorded during the steady state flow. There is a potential hazard: the possibility of
unsealing, leakage, and, in the worst case, rupture of the pipe wall. When the valve is
closed, the kinetic energy of the flowing liquid stream changes into pressure energy. At
the upstream end of the closing valve, a wave of an increased pressure is generated which
travels along the length of the pipe at the pressure wave speed, c. This wave, after reaching
the pressure reservoir, is reflected and travels back toward the valve. After returning to
the valve, it reflects again as a negative pressure wave, and then it travels to the reservoir,
where the second rebound takes place, and the wave returns back to the closed valve. After
the second arrival to the valve, the first period of the water hammer event is completed,
and the phenomenon begins to proceed as at the initial phase, but under slightly different
conditions, because during the first impact, the front of this wave was dispersed as a result
of skin friction between the liquid and the pipe wall. In mathematical analysis, we need to
know what happens at the beginning, i.e., before analyzed transient event. In our problem
steady flow exists, a laminar flow take place, which velocity profile has a parabolic shape,
as described by Equation (6). A linear pressure drop occurs at the same time along the
length of the pipe.

Axial boundary conditions for the initial and transient laminar flow situations are as
follows [33]:

(a) For velocity {
v(0, 0) = v0
v(0, t) = 0

, (4)

(b) For pressure {
p(L, 0) = p(L, t) = const
p(0, 0) = p(L, 0)− 8µv0

R2
. (5)

The initial condition of the velocity profile, at t = 0, may be given as follows:

v(x, r, 0) = −2v0

[
1−

( r
R

)2
]

. (6)

The radial boundary conditions (in pre-transient, as well as in unsteady flow) are as
follows:

(a) at r = 0; ∂v
∂r = 0;

(b) at r = R; v(x, R, 0) = v(x, R, t) = 0 (no-slip condition).
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3. Solution of Water Hammer Problem in Laplace Domain

Holmboe, after taking the Laplace transform of Equations (1) and (2), derived the
pressure solution in the Laplace domain [33]:

p̃(x, s) = ZM
s

[
e−

x
c M·s − e−

(2L−x)
c M·s − e−

(2L+x)
c M·s + e−

(4L−x)
c M·s + e−

(4L+x)
c M·s − . . .

]
+

8µv0

sR2 x, (7)

where Z = ρcv0 is the Joukowsky pressure-rise formula.
The equation for velocity solution was derived recently [4], with the help of Equation (7),

and it reads as follows:

ṽ(x, s) = −v0

s

[
−e−

x
c M·s − e−

(2L−x)
c M·s + e−

(2L+x)
c M·s + e−

(4L−x)
c M·s − e−

(4L+x)
c M·s − . . .

]
− v0

s
. (8)

In the above equations, the most important role is played by the dynamic viscosity
function, M, which is a Laplace operator expressed in the following way [54,55]:

M =

√√√√√− J0

(
i
√

s
ν R
)

J2

(
i
√

s
ν R
) =

√√√√√√√
I0

(√
s R2

ν

)
I2

(√
s R2

ν

) , (9)

where I0 and I2 are modified Bessel functions of the zero and second order, respectively.
From Ham’s dissertation [55], as well as from Brereton and Jing’s paper [63], one can

find the inverse Laplace transform of a function being an argument of this square root:

L−1

 I0

(√
s
ν R
)

I2

(√
s
ν R
)
 = δ(t) + 8

ν

R2 + 4
ν

R2 ∑∞
i=1 e−ηi

2 ν
R2 t, (10)

where ηi represents consecutive zeros of the first-kind Bessel functions of the second order,
J2(ηi) = 0.

It is worth noting that the exponential infinite series contained in Equation (10) plays
an important role in the numerical modeling of water hammer and, more precisely, in
modeling the skin friction occurring between the flowing liquid and the walls of the
conduit. This series was originally derived by Zielke [35,36] for the purposes of numerical
calculations of the wall shear stress. To increase the convergence of this solution (limiting
the number of terms), it can be written in the following exponential form [64]:

∑∞
i=1 e−ηi

2 ν
R2 t ≈∑k

i=1 mie−ni t̂, (11)

where: t̂ = t ν
R2 is a dimensionless time.

In the literature on the modeling of unsteady pipe flows, it has been adopted as the
weighting function. With the time and appearance of the effective solutions of convolutional
integrals, the approximate solutions of this function have been shown by a number of
authors in their works on numerical calculations of water hammer [64–68]. The use of the
weighting function in the form of a finite sum presented by the formula in Equation (11)
increases the efficiency of numerical calculations.

If the Laplace transform of the function described by the formula in Equation (10) is
performed, and the following equivalent form of the sub-elemental function is obtained:

I0

(√
s
ν R
)

I2

(√
s
ν R
) = 1 +

8
s

ν

R2 + 4
ν

R2 ∑∞
i=1

1
ηi

2 ν
R2 + s

. (12)
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The first two terms on the right-hand side of Equation (12) are quasi-steady solutions
to the problem of fluid flow in a pressurized conduit (a linear friction model) that represent
uniformly distributed resistance [58,69]. Thus one can write down the following:

Mq−s =

√
1 +

8
s

ν

R2 . (13)

Let us graphically compare the courses of both complete solutions (Equations (9) and (13))
by taking into account the frequency-dependent friction and the quasi-steady one. For the
purpose of the graphical representation of the obtained results, let us define the dimension-
less Laplace transform operator as ŝ = s R2

ν . Then, by replacing the Laplace transform with
the Fourier transform, i.e., substituting for ŝ = jΩ, (where Ω represents the dimensionless
frequency Ω = ωR2

ν ), it is possible to graphically analyze the above solutions (Figure 2).
From Figure 2, it can be seen that the real part of the dynamic viscosity function, M, takes
infinite values when ŝ→ 0 ; otherwise, i.e., when ŝ→ ∞ , it goes to 1. The imaginary part
goes from minus infinity to the zero value when ŝ→ ∞ . The quasi-steady solution behaves
similarly asymptotically, although there are significant differences between the waveforms
of the M and Mq-s functions, especially in the dimensionless frequency range from about 1
to 1000. The Realis of the quasi-steady solution, as can be seen clearly from Figure 2c, takes
the final value (≈1) already for Ω ≈ 30, while the unsteady solution has values greater than
1, still even for the frequency Ω ≈ 1000. The imaginary waveforms (Figure 2d) confirm
what is visible in the real-part waveforms, i.e., that both of these functions at different times
tend to asymptotic (end) values. Hence, in Figure 2d, from the frequency Ω ≈ 10, it can be
seen that these functions tend to the final values with a different dynamic.

Figure 2. Course of dynamic viscosity function (a) Realis graph, (b) Imaginaris graph, (c) Enlarge of
Realis graph, (d) Enlarge of Imaginaris graph.
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4. Novel Method to Calculate the Inverse Laplace Transform of M Function

Let us use the following integral representation (special thanks for pointing this
identity goes to Professor Alireza Ansari from Shahrekord University, Iran):

1√
s∗

=
1√
π

∫ ∞

0

e−s∗τ
√

τ
dτ, (14)

where:

s∗ =
I2

(√
s R2

ν

)
I0

(√
s R2

ν

) = −
J2

(
i
√

s
ν R
)

J0

(
i
√

s
ν R
) . (15)

With the help of Brereton–Jiang [63] solution, we achieve the following:

I2

(√
s R2

ν

)
I0

(√
s R2

ν

) = s2 R2

ν

(
1
8s
− 4 ∑∞

i=1
1

µ6
i

ν
R2 + µ4

i s

)
, (16)

where µi represents the consecutive zeros of the first-kind Bessel function of the zero order,
J0(µi ) = 0.

Let use a partial fraction expansion to the right-hand side of the above equation; then
one obtains the following form:

s2 R2

ν

(
1
8s
− 4 ∑∞

i=1
1

µ6
i

ν
R2 + µ4

i s

)
= 1− 4 ∑∞

i=1
1

µ2
i +

R2

ν s
. (17)

Through the combination and rearrangement of Equations (14)–(17), we obtain the following:

1√√√√√ I2

(√
s R2

ν

)
I0

(√
s R2

ν

)
=

1√
π

∫ ∞

0

e
−s2 R2

ν ( 1
8s−4 ∑∞

i=1
1

µ6
i

ν
R2 +η4

i s
)τ

√
τ

dτ =
1√
π

∫ ∞

0

e
−(1−4 ∑∞

i=1
1

µ2
i +

R2
ν s

)τ

√
τ

dτ, (18)

and by working on the last term of the right-hand side of Equation (18), we achieve
the following:

∫ ∞
0

e
−(1−4 ∑∞

i=1
1

µ2
i +

R2
ν s

)τ

√
τ

dτ =
∫ ∞

0
e−τe

4τ ∑∞
i=1

1

µ2
i +

R2
ν s

√
τ

dτ =
∫ ∞

0
e−τ ∑∞

k=0

4τ ν
R2 ∑∞

i=1
1

µ2
i

ν
R2 +s

k

k!√
τ

dτ =

∑∞
k=0

4k

k!

∫ ∞
0

e−ττk
(

ν
R2

)k
(

∑∞
i=1

1
µ2

i
ν

R2 +s

)k

√
τ

dτ = ∑∞
k=0

4k

k!

∫ ∞
0 e−ττk−0.5

(
ν

R2

)k
(

∑∞
i=1

1
µ2

i
ν

R2 +s

)k
dτ =

∑∞
k=0

4k

k!

(
ν

R2

)k
(

∑∞
i=1

1
µ2

i
ν

R2 +s

)k ∫ ∞
0 e−ττk−0.5dτ = ∑∞

k=0
4k

k!

(
ν

R2

)k
(

∑∞
i=1

1
µ2

i
ν

R2 +s

)k
(Γ(k + 0.5, 0)− Γ(k + 0.5, ∞))

(19)

where Γ(b, t) is the incomplete gamma function which for t = ∞ has a zero value,
Γ(b, ∞) = 0, and one finally obtains the following:√√√√√√√

I0

(√
s R2

ν

)
I2

(√
s R2

ν

) =
1√
π

∑∞
k=0

Γ(k + 0.5)
Γ(k + 1)

(
4ν

R2

)k
(

∑∞
i=1

1
µ2

i
ν

R2 + s

)k

. (20)
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The above form based on the gamma function (Γ(k + 0.5) and Γ(k + 1)) of the solution
is useful in our further derivations in this paper. The above Equation (20) can also be
written in two other forms, respectively, dependent on binomial function and factorials:

√√√√√√√
I0

(√
s R2

ν

)
I2

(√
s R2

ν

) = ∑∞
k=0

(
2k
k

)(
ν

R2 ∑∞
i=1

1
µ2

i
ν

R2 + s

)k

= ∑∞
k=0

(2k)!
k!2

(
ν

R2 ∑∞
i=1

1
µ2

i
ν

R2 + s

)k

, (21)

where
(

n
k

)
is a binomial coefficient, which is defined as follows:

(
n
k

)
=

n!
(n− k)!k!

. (22)

We do not bother with the quotient of the gamma function, the square root of π, or

the term
(

4ν
R2

)k
presented in Equation (20) because they constitute a certain constant value

depending on k. Thus, the problem of Laplace’s inverse transformation is based on finding
inverses from the following power function:

L−1


(

∑∞
i=1

1
µ2

i
ν

R2 + s

)k
. (23)

The solution for k = 0 is δ(t) (Dirac delta function), while for k = 1, it is commonly
known to be the following:

L−1

{
∑∞

i=1
1

µ2
i

ν
R2 + s

}
= ∑∞

i=1 e−µ2
i

ν
R2 t. (24)

For k > 1, the following approach based on convolutional integrals is proposed:

L−1


(

∑∞
i=1

1
µ2

i
ν

R2 + s

)k
 =


A =

∫ t
0 ∑∞

i=1 e−µ2
j

ν
R2 u

∑∞
j=1 e−µ2

j
ν

R2 udu f or k = 2

B =
∫ t

0 A(t− u)∑∞
j=1 e−µ2

j
ν

R2 udu f or k = 3

C =
∫ t

0 B(t− u)∑∞
j=1 e−µ2

j
ν

R2 udu f or k = 4

D =
∫ t

0 C(t− u)∑∞
j=1 e−µ2

j
ν

R2 udu f or k = 5

. (25)

To better understand what type of function we are dealing with after calculating the
convolution, let us consider in detail a fairly simple case for k = 2. Let us simplify the
problem by analyzing possible analytical solutions of this type of convolution:

A∗ =
∫ t

0
e−a(t−u)e−budu, (26)

where a = µ2
a

ν
R2 , and b = µ2

b
ν

R2 .
The result of the above integral depends on the values of the coefficients a and b

(always positive in our case). A simpler solution is obtained when a = b, as then we obtain
the following:

A∗1 =
∫ t

0
e−a(t−u)e−audu = te−at. (27)

However, when a 6= b, one achieves the following:

A∗2 =
∫ t

0
e−a(t−u)e−budu =

e−bt − e−at

a− b
=

e−bt

a− b
− e−at

a− b
. (28)
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If, instead of a single product of exponential functions, we consider the product of
infinite sums built on them, we get the following result for k = 2:

A = t ∑∞
i=1 e−µ2

i
ν

R2 t
+

R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t

∑∞
j = 1
j 6= i

1
µ2

j − µ2
i
−∑∞

j = 1
j 6= i

1
µ2

i − µ2
j

. (29)

The sum of two infinite series based on the differences of zeros of the Bessel function,
i.e., the square bracket, can be written as follows:

∑∞
j = 1
j 6= i

1
µ2

j − µ2
i
−∑∞

j = 1
j 6= i

1
µ2

i − µ2
j
= ∑∞

j = 1
j 6= i

1
µ2

j − µ2
i
+ ∑∞

j = 1
j 6= i

1
µ2

j − µ2
i
= 2 ∑∞

j = 1
j 6= i

1
µ2

j − µ2
i

. (30)

The infinite series of the above type was dealt with by Calogero [60,61] and then by
Ahmed and Calogero [62] (the first author of this paper would like to thank Dr. Javier
Garcia from the University of A Coruña, Spain, for pointing out this important relationship).
In the first paper [60], Calogero proved that the infinite series based on Bessel functions
satisfy the infinite set of equations:

∑∞
j = 1
j 6= i

1
µ2

j,h − µ2
i,h

=
1 + h
2µ2

i,h
, (31)

where h is the order of Bessel functions. The obtained results are related to the established
connection between the motion of poles and zeros of special solutions of partial differential
equations and solvable many-body problems. In the next paper [61], Calogero found that
this infinite system (31), together with the Rayleigh sum rule, i.e.,

∑∞
i = 1

1
µ2

i,h
=

1
4(h + 1)

, (32)

eliminates the scale invariance of (31) and characterizes the (squared) zeros of the
Bessel function Jh, namely, that the solution of (31) and (32) is unique. The author next
proved that other relations of a similar type can be derived:

∑∞
j = 1
j 6= i

1(
µ2

j,h − µ2
i,h

)2 =
µ2

i,h − (h + 1)(h + 5)

12µ4
i,h

, (33)

∑∞
j = 1
j 6= i

1(
µ2

j,h − µ2
i,h

)3 = −
µ2

i,h − 2(h + 1)(h + 3)

16µ6
i,h

. (34)

Other solutions of this, as well as of a modified type (denominators multiplied addi-
tionally by µa

j,h), were presented in a coauthored paper by Ahmed and Calogero [62]. For
other interesting relations of similar types, please consult References [70–73].

Using the Calogero solution, Equation (32), the above sum for the zeros of the Bessel
function of the first kind and zero order can be written as follows (in our case h = 0):

∑∞
j = 1
j 6= i

1
µ2

j − µ2
i
=

1
2µ2

i
. (35)
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The above identity significantly simplifies the obtained final solution for k = 2 in the
time domain as follows:

A = t ∑∞
i=1 e−µ2

i
ν

R2 t
+

R2

ν ∑∞
i=1

e−µ2
i

ν
R2 t

µ2
i

. (36)

The obtained result can be easily verified numerically by going back to the Laplace
domain with this solution:

L{A} = ∑∞
i=1

1(
µ2

i
ν

R2 + s
)2 +

R2

ν ∑∞
i=1

1

µ2
i

(
µ2

i
ν

R2 + s
) =

(
∑∞

i=1
1

µ2
i

ν
R2 + s

)2

. (37)

The solution for k = 2 multiplied by
(

ν
R2

)k
has the following form:

(
ν

R2 ∑∞
i=1

1
µ2

i
ν

R2 + s

)2

=
( ν

R2

)2
∑∞

i=1
1(

µ2
i

ν
R2 + s

)2 +
( ν

R2

)2 R2

ν ∑∞
i=1

1

µ2
i

(
µ2

i
ν

R2 + s
) . (38)

For the purposes of graphical comparative analysis, let us write it in a dimension-
less form:

Ã =

(
∑∞

i=1
1

µ2
i + ŝ

)2

= ∑∞
i=1

1(
µ2

i + ŝ
)2 + ∑∞

i=1
1

µ2
i
(
µ2

i + ŝ
) , (39)

In this way, it is possible to graphically analyze the obtained solution in the frequency
domain (Figure 3).

The above results of the simulation comparisons (Figure 3) were obtained considering
one million zeros of the Bessel function (l = 106). It was then noticed (Figure 4) that reducing
the number of zeros taken into account resulted in a decrease in the convergence of the
original function “Org” for large values of Ω. Such a decrease was not observed (Figure 5)
in the case of the new obtained solution “Ver”; here, in the analyzed range, i.e., up to the
frequency Ω = 105, the acceptable convergence was obtained (reVer graph, Figure 5a),
taking into account only a thousand zeros (l = 103). This fact is undoubtedly influenced by
the Calogero dependency.

Figure 3. (a) Realis and (b) Imaginaris graphs of original function “Org” and newly derived substitute
“Ver”. Semi−log scale for k = 2 case.
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Figure 4. Dependence on the number of summation terms “l” of original function “Org”: (a) Realis,
(b) Imaginaris.

Figure 5. Dependence on the number of summation terms “l” of newly derived function: (a) Realis,
(b) Imaginaris.

The obtained solution in the time domain for k = 2 is the basis for finding a solution
for k = 3. According to the formula in Equation (25), we should calculate the following
convolution:

B =
∫ t

0

(
u

∞

∑
i=1

e−µ2
i

ν
R2 u

+
R2

ν

∞

∑
i=1

e−µ2
i

ν
R2 u

µ2
i

)
∞

∑
j=1

e−µ2
j

ν
R2 (t−u)du. (40)

The above notation means that we need to know the analytical solutions of the follow-
ing integral:

B =
∫ t

0

(
u

∞

∑
i=1

e−au +
∞

∑
i=1

e−au

a

)
∞

∑
j=1

e−b(t−u)du. (41)

Consequently, it means determining the solutions of the following two convolution integrals:

B∗ = B∗I + B∗I I =
∫ t

0
ue−aue−b(t−u)du +

∫ t

0

e−au

a
e−b(t−u)du. (42)
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The solution to the first of the above integrals, B∗I , when a 6= b is the function, is
as follows:

B∗1 =
e−bt

(a− b)2 −
e−at(t(a− b) + 1)

(a− b)2 , (43)

Meanwhile, when a = b, the solution is as follows:

B∗2 =
t2

2
e−at. (44)

On the other hand, the solutions of the second integral, B∗I I , are as follows when a 6= b:

B∗3 =
e−bt − e−at

a2 − ab
, (45)

Meanwhile, when a = b, the solution is as follows:

B∗4 =
te−at

a
. (46)

By considering their infinite series instead of single exponential expressions, the
following solution is obtained for k = 3:

B =
t2

2 ∑∞
i=1 e−µ2

i
ν

R2 t
+ t

R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t

 1
µ2

i
−∑∞

j = 1
j 6= i

1
µ2

i − µ2
j

+

(
R2

ν

)2

∑∞
i=1 e−µ2

i
ν

R2 t

∑∞
j = 1
j 6= i

1
µ4

j − µ2
i µ2

j
−∑∞

j = 1
j 6= i

1
µ4

i − µ2
j µ2

i

. (47)

The last term in the square bracket can be written as follows:

∑∞
j = 1
j 6= i

1
µ4

j − µ2
i µ2

j
−∑∞

j = 1
j 6= i

1
µ4

i − µ2
j µ2

i
= ∑∞

j = 1
j 6= i

µ2
i + µ2

j

µ2
i µ2

j

(
µ2

j − µ2
i

) = ∑∞
j = 1
j 6= i

1

µ2
j

(
µ2

j − µ2
i

) +
1

µ2
i

∑∞
j = 1
j 6= i

1(
µ2

j − µ2
i

) . (48)

Then we can obtain the following:

B =
t2

2 ∑∞
i=1 e−µ2

i
ν

R2 t
+ t

R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t

 1
µ2

i
+ ∑∞

j = 1
j 6= i

1
µ2

j − µ2
i

+

(
R2

ν

)2

∑∞
i=1 e−µ2

i
ν

R2 t

∑∞
j = 1
j 6= i

1

µ2
j

(
µ2

j − µ2
i

) +
1

µ2
i

∑∞
j = 1
j 6= i

1(
µ2

j − µ2
i

)
. (49)

Unfortunately, in the works of Calogero [60,61], as well as in the work of Ahmed–
Calogero [62], one cannot find a solution for the function ∑∞

j = 1
j 6= i

1
µ2

j

(
µ2

j−µ2
i

) appearing in

the equation (Equation (49)). The following solution can be deduced from knowing that:

1
b(b− a)

=
1

(b− a)2 −
a

b(a− b)2 . (50)

In our case, more generally, we obtain the following:

∞

∑
j=1
j 6=i

1

µ2
j

(
µ2

j − µ2
i

) =
∞

∑
j=1
j 6=i

1(
µ2

j − µ2
i

)2 − µ2
i

∞

∑
j=1
j 6=i

1

µ2
j

(
µ2

i − µ2
j

)2 . (51)

Moreover, we also notice the following:

∞

∑
j=1
j 6=i

1(
µ2

j − µ2
i

)2 =
∞

∑
j=1
j 6=i

1(
µ2

i − µ2
j

)2 . (52)
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Thus, it is possible to use the formulas presented in the work by Ahmed–Calogero [62]:

∞

∑
j=1
j 6=i

1

µ2
j

(
µ2

i − µ2
j

)2 =
4µ2

i − 23
12µ6

i
and

∞

∑
j=1
j 6=i

1(
µ2

j − µ2
i

)2 =
µ2

i − 5
12µ4

i
. (53)

Then we obtain the following:

∞

∑
j=1
j 6=i

1

µ2
j

(
µ2

j − µ2
i

) =
µ2

i − 5
12µ4

i
−

4µ2
i − 23

12µ4
i

=
6− µ2

i
4µ4

i
. (54)

Having the solutions of Equations (35) and (54), we can return to Equation (49) and
derive its final time domain form:

B =
t2

2

∞

∑
i=1

e−µ2
i

ν
R2 t

+
3
2

t
R2

ν

∞

∑
i=1

e−µ2
i

ν
R2 t

µ2
i

+

(
R2

ν

)2 ∞

∑
i=1

e−µ2
i

ν
R2 t
(

8− µ2
i

4µ4
i

)
. (55)

This equation reads in the Laplace domain as follows:

L{B} = ∑∞
i=1

1(
µ2

i
ν

R2 + s
)3 +

3
2

(
R2

ν

)
∑∞

i=1
1

µ2
i

(
µ2

i
ν

R2 + s
)2 +

(
R2

ν

)2

∑∞
i=1

1(
µ2

i
ν

R2 + s
)(8− µ2

i
4µ4

i

)
. (56)

By multiplying the formula in Equation (56) by
(

ν
R2

)3
, one can obtain a dimension-

less solution:

B̃ =

(
∞

∑
i=1

1
µ2

i + ŝ

)3

=
∞

∑
i=1

1(
µ2

i + ŝ
)3 +

3
2

∞

∑
i=1

1

µ2
i
(
µ2

i + ŝ
)2 +

∞

∑
i=1

1(
µ2

i + ŝ
)(8− µ2

i
4µ4

i

)
. (57)

The comparison of the obtained solution for k = 3 (Equation (57)) is shown in Figure 6
below. Please note that, this time, the analyzed function is shown in semi-log graphs and
not as in the case of k = 2 in a log-logarithmic scale. This change resulted from the nature of
the variability of the analyzed solution; for k = 2, the real values did not exceed the abscissa
axis, while for k = 3, such a drop occurs (see Figure 6a), hence the need for a different
imaging and the use of a different ordinate axis scale.

Figure 6. Realis (a) and Imaginaris (b) graphs of original function “Org” and newly derived substitute
“Ver”. Semi−log scale for k = 3 case.
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The above comparison (Figure 6) was made by considering only one thousand zeros
of the Bessel function. Further increasing the number of zeros of the Bessel functions
taken into account does not increase the degree of agreement of the two functions (“Org”
and “Ver”).

For k = 4, it is easier to apply a slightly different method than for k = 3. This method
differs from the proposed solution from the formula in Equation (25) in that our sought
solution is determined as the convolutional integral from the solutions obtained for k = 2:

L−1


(

∞

∑
i=1

1
µ2

i
ν

R2 + s

)2( ∞

∑
i=1

1
µ2

i
ν

R2 + s

)2
. (58)

Then we obtain the following:

L−1


(

∞

∑
i=1

1
µ2

i
ν

R2 + s

)4
 = C =

∫ t

0
A(t− u)A(u)du. (59)

Remembering that the solution for k = 2 is described by the formula in Equation (36),
we can search for solutions for k = 4 in the form of the following convolutional integral:

C =
∫ t

0

(
u ∑∞

i=1 e−µ2
i

ν
R2 u

+ ∑∞
i=1

e−µ2
i

ν
R2 u

µ2
i

ν
R2

)(
(t− u)∑∞

j=1 e−µ2
j

ν
R2 (t−u)

+ ∑∞
j=1

e−µ2
j

ν
R2 (t−u)

µ2
j

ν
R2

)
du. (60)

The advantage of the above approach is that the final result in the time domain will be
the result of three convolutional functions (not four as if one used approach compatible
with Equation (25)). It also results from the analysis of the product of solutions for k = 2 in
the Laplace domain, by means of which the following can be shown:

(
∑∞

i=1
1

µ2
i

ν
R2 +s

)4
=

(
∑∞

i=1
1(

µ2
i

ν
R2 +s

)2 +
R2

ν ∑∞
i=1

1
µ2

i

(
µ2

i
ν

R2 +s
)
)2

= ∑∞
i=1

1(
µ2

i
ν

R2 +s
)2 ·∑∞

i=1
1(

µ2
i

ν
R2 +s

)2 + 2 ∑∞
i=1

1(
µ2

i
ν

R2 +s
)2 ·

R2

ν ∑∞
i=1

1
µ2

i

(
µ2

i
ν

R2 +s
) + R2

ν ∑∞
i=1

1
µ2

i

(
µ2

i
ν

R2 +s
) · R2

ν ∑∞
i=1

1
µ2

i

(
µ2

i
ν

R2 +s
) .

(61)

The solution (60), as well as the return of it to the time domain with the help of the
Equation (61), results, as can be seen, in the appearance of three convolution integrals.
Assuming at the beginning, as for the cases of k = 2 and k = 3, the consideration of integrals
for single exponential terms, one can write the following:

C = C∗I + C∗I I + C∗I I I =
∫ t

0
ue−au · (t− u)e−b(t−u)du + 2

∫ t

0
ue−au · e−b(t−u)

b
du +

∫ t

0

e−au

a
· e−b(t−u)

b
du, (62)

where a = µ2
i

ν
R2 , and b = µ2

j
ν

R2 .
The solutions for these integrals are as follows:
(a) C∗I for a 6= b

C∗1 = e−bt (t(a− b)− 2)

(a− b)3 + e−at (t(a− b) + 2)

(a− b)3 , (63)

(b) C∗I for a = b

C∗2 =
1
6

t3e−at, (64)

(c) C∗I I for a 6= b

C∗3 = 2

(
e−bt

b(a− b)2 − e−at (t(a− b) + 1)

b(a− b)2

)
, (65)
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(d) C∗I I for a = b

C∗4 =
t2

a
e−at, (66)

(e) C∗I I I for a 6= b

C∗5 =
e−bt

ab(a− b)
− e−at

ab(a− b)
, (67)

(f) C∗I I I for a = b

C∗6 =
te−at

a2 . (68)

By considering their infinite series instead of single exponential expressions, the
following solution is obtained for k = 4:

C = t3

6 ∑∞
i=1 e−µ2

i
ν

R2 t + t2 R2

ν ∑∞
i=1

e
−µ2

i
ν

R2 t

µ2
i

+ t
(

R2

ν

)2
∑∞

i=1 e−µ2
i

ν
R2 t

 1
µ4

i
+ 2 ∑∞

j = 1
j 6= i

1(
µ2

i−µ2
j

)2 − 2 ∑∞
j = 1
j 6= i

1
µ2

j

(
µ2

i−µ2
j

)
+

4
(

R2

ν

)3
∑∞

i=1 e−µ2
i

ν
R2 t

∑∞
j = 1
j 6= i

1(
µ2

i−µ2
j

)3 −∑∞
j = 1
j 6= i

1
µ2

i µ2
j

(
µ2

i−µ2
j

)
,

(69)

Using the Calogero [61] formulas (Equations (A5) and (A8)) collected in Appendix A
of this paper and the formula in Equation (54), one can simplify the obtained equation in its
final form (detailed mathematical steps are summarized in Appendix C Equation (A20)):

C =
t3

6 ∑∞
i=1 e−µ2

i
ν

R2 t + t2 R2

ν ∑∞
i=1

e−µ2
i

ν
R2 t

µ2
i

+ t
(

R2

ν

)2

∑∞
i=1 e−µ2

i
ν

R2 t
(

19− 2µ2
i

6µ4
i

)
+

(
R2

ν

)3

∑∞
i=1 e−µ2

i
ν

R2 t
(
−3µ2

i + 18
4µ6

i

)
, (70)

The Laplace transform of the above solution gives the following result:

L{C} = ∑∞
i=1

1(
µ2

i
ν

R2 +s
)4 + 2 R2

ν ∑∞
i=1

1
µ2

i

1(
µ2

i
ν

R2 +s
)3 +

(
R2

ν

)2
∑∞

i=1
1(

µ2
i

ν
R2 +s

)2

(
19−2µ2

i
6µ4

i

)
+
(

R2

ν

)3
∑∞

i=1
1(

µ2
i

ν
R2 +s

)( 18−3µ2
i

4µ6
i

)
=(

∑∞
i=1

1
µ2

i
ν

R2 +s

)4
,

(71)

Multiplying the obtained formula by
(

ν
R2

)4
makes it possible to write this solution in

a dimensionless form:

C̃ =

(
∑∞

i=1
1

µ2
i + ŝ

)4

= ∑∞
i=1

1(
µ2

i + ŝ
)4 + 2 ∑∞

i=1
1

µ2
i
(
µ2

i + ŝ
)3 + ∑∞

i=1
1(

µ2
i + ŝ

)2

(
19− 2µ2

i
6µ4

i

)
+ ∑∞

i=1
1(

µ2
i + ŝ

)(18− 3µ2
i

4µ6
i

)
, (72)

The comparison of the obtained dimensionless solution for k = 4 is shown in Figure 7.
The last solution that was derived in this paper concerns the case when k = 5. In order to
obtain this solution, the convolutional integral from the solutions for k = 4 and k = 1 was
used. This solution was obtained with the help of the formula presented in Equation (25)
(it is possible to obtain the same final solution as a convolution from solutions for k = 2 and
k = 3). The detailed procedure of obtaining the final result is similar to the one discussed
in the previous cases (k = 2, 3, and 4); hence, it is not discussed here again. For the sake
of clarity, however, it is worth writing down (see Equation (A21) in Appendix C) all the
obtained infinite series of Calogero–Ahmed type from which the final coefficients of the
last terms were determined.

It is possible that such knowledge will enable us to propose a general solution in
the near future. In order to obtain the final result (and in particular the coefficient for
the last term), it was necessary to apply a number of formulas for infinite series of the
Calogero–type (Equations (2), (4), (5) and (14)–(18) from Reference [62], for which the
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values are summarized in Appendix A (in our case for h = 0)). Finally, the following result
was obtained:

D = t4

24 ∑∞
i=1 e−µ2

i
ν

R2 t
+ t3

6
R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t
(

5
2µ2

i

)
+ t2

2

(
R2

ν

)2
∑∞

i=1 e−µ2
i

ν
R2 t
(

55−5µ2
i

12µ4
i

)
+

t
(

R2

ν

)3
∑∞

i=1 e−µ2
i

ν
R2 t
(

350−55µ2
i

48µ6
i

)
+
(

R2

ν

)4
∑∞

i=1 e−µ2
i

ν
R2 t
(

512−106µ2
i +3µ4

i
48µ8

i

)
,

(73)

Figure 7. Realis (a) and Imaginaris (b) graphs of original function “Org” and newly derived substitute
“Ver”. Semi−log scale for k = 4 case.

Moreover, in the Laplace domain, we obtain the following:

L{D} = ∑∞
i=1

1(
µ2

i
ν

R2 +s
)5 +

R2

ν ∑∞
i=1

1(
µ2

i
ν

R2 +s
)4

(
5

2µ2
i

)
+
(

R2

ν

)2
∑∞

i=1
1(

µ2
i

ν
R2 +s

)3

(
55−5µ2

i
12µ4

i

)
+

(
R2

ν

)3
∑∞

i=1
1(

µ2
i

ν
R2 +s

)2

(
350−55µ2

i
48µ6

i

)
+
(

R2

ν

)4
∑∞

i=1
1(

µ2
i

ν
R2 +s

)( 512−106µ2
i +3µ4

i
48µ8

i

)
=

(
∑∞

i=1
1

µ2
i

ν
R2 +s

)5
,

(74)

Multiplying the obtained formula by
(

ν
R2

)5
makes it possible to write this solution in

a dimensionless form:

D̃ =

(
∑∞

i=1
1

µ2
i +ŝ

)5
= ∑∞

i=1
1

(µ2
i +ŝ)

5 +
5
2 ∑∞

i=1
1

µ2
i (µ2

i +ŝ)
4 + ∑∞

i=1
1

(µ2
i +ŝ)

3

(
55−5µ2

i
12µ4

i

)
+

∑∞
i=1

1
(µ2

i +ŝ)
2

(
350−55µ2

i
48µ6

i

)
+ ∑∞

i=1
1

(µ2
i +ŝ)

(
512−106µ2

i +3µ4
i

48µ8
i

)
,

(75)

The comparison of the obtained dimensionless solution for k = 5 is shown in Figure 8.
The further determination of successive solutions for powers greater than 5 becomes
problematic in terms of manual implementation, which is associated with the need to use
more and more complex Calogero–Ahmad series solutions. These solutions are the result
of successive convolutions. In addition, the literature lacks solutions to these series, so it
becomes necessary to constantly determine new formulas or find a relationship that would
enable the analytical determination of their mathematical forms.

The most important advantage of the presented novel technique is the possibility to
fully analytically describe the dynamic viscosity function in an extended time range. The
inverse Laplace transform of this important function was developed for the first time (to
the best knowledge of the authors). With its help, it will be possible to find a complete
solution to water hammer equations (investigations are in progress to achieve this goal)
and to define accurate approximation solutions of these phenomena (traditionally preferred
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by practitioners due to their mathematical simplicity). Another advantage of the presented
technique is that it can be easily extended (solution for larger k can be found) with the help
of a machine-learning technique. Initial work is currently underway on the implementation
of such a computational algorithm.

Figure 8. Realis (a) and Imaginaris (b) graphs of original function “Org” and newly derived substitute
“Ver”. Semi−log scale for k = 5 case.

5. Comparison of M Function Transform in Time and Frequency Domain

The knowledge of the convolutional solutions for the first power expansions of the
analyzed dynamic viscosity function allows us to present a collective solution. Looking
at the constants that appear in the new notation of the analyzed function (double infinite
summation form, Equation (20)), it can be seen that they are based on the values of the
gamma function that can be expressed as a definite integral for <(a) > 0 in Euler’s integral
form [74]:

Γ(a) =
∫ ∞

0
ta−1e−tdt. (76)

A time domain solution of such rational equations, i.e.,

∑∞
k=0

(
∑∞

i=1
1

µ2
i

ν
R2 + s

)k

, (77)

was found in the previous section as an inverse Laplace transform for the first five powers
of k (for collected successive solutions of this type, see Appendix B).

Knowing the above solutions and the values of the constants Γ(k+0.5)
Γ(k+1) ·

4k
√

π
calculated

for the first five powers of k, we are able to write the final form of the dynamic viscosity
function in time domain, i.e., the inverse Laplace transform of our searched function:

L−1


√√√√√ I0

(√
s R2

ν

)
I2

(√
s R2

ν

)
 = δ(t) + 2 ν

R2 ∑∞
i=1 e−µ2

i t̂ + 6 ν
R2

[
t̂ ∑∞

i=1 e−µ2
i t̂ + ∑∞

i=1
e−µ2

i t̂

µ2
i

]
+

20 ν
R2

[
t̂2

2 ∑∞
i=1 e−µ2

i t̂ + 3t̂
2 ∑∞

i=1
e−µ2

i t̂

µ2
i

+ ∑∞
i=1 e−µ2

i t̂
(

8−µ2
i

4µ4
i

)]
+ 70 ν

R2

[
t̂3

6 ∑∞
i=1 e−µ2

i t̂+

t̂2 ∑∞
i=1

e−µ2
i t̂

µ2
i

+ t̂ ∑∞
i=1 e−µ2

i t̂
(

19−2µ2
i

6µ4
i

)
+ ∑∞

i=1 e−µ2
i t̂
(

18−3µ2
i

4µ6
i

)]
+ 252 ν

R2

[
t̂4

24 ∑∞
i=1 e−µ2

i t̂+

5t̂3

12 ∑∞
i=1

e−µ2
i t̂

µ2
i

+ t̂2

2 ∑∞
i=1 e−µ2

i t̂
(

55−5µ2
i

12µ4
i

)
+ t̂ ∑∞

i=1 e−µ2
i t̂
(

350−55µ2
i

48µ6
i

)
+

∑∞
i=1 e−µ2

i t̂
(

512−106µ2
i +3µ4

i
48µ8

i

)]
,

(78)
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Interestingly, the above sum can also be written in a different (shortened) form by
ordering the coefficients with appropriate sums:

L−1


√√√√√ I0

(√
s R2

ν

)
I2

(√
s R2

ν

)
 = ν

R2

[
δ(t) R2

ν +
(

2 + 6t̂ + 10t̂2 + 35
3 t̂3 + 21

2 t̂4
)

∑∞
i=1 e−µ2

i t̂+

(
1 + 20

3 t̂ + 35
2 t̂2 + 105t̂3)∑∞

i=1
e−µ2

i t̂

µ2
i

+
(

13
4 −

805
12 t̂ + 1155

2 t̂2
)

∑∞
i=1

e−µ2
i t̂

µ4
i

+
(
− 483

2 +

3675
2 t̂
)

∑∞
i=1

e−µ2
i t̂

µ6
i

+ 2688 ∑∞
i=1

e−µ2
i t̂

µ8
i

]
,

(79)

Let us compare our obtained solution of the inverse transform of the dynamic vis-
cosity function, M, with the inverse Laplace transform of the quasi-steady form of this
function, Mq-s, i.e., with the inverse transform of the function described by the formula in
Equation (13):

L−1

{
Mq−s =

√
1 +

8
s

ν

R2

}
= 4

ν

R2 e−4 ν
R2 t
(

I0

(
4

ν

R2 t
)
+ I1

(
4

ν

R2 t
))

+ δ(t). (80)

Now we are going to investigate asymptotic solutions, as well. With the help of
the generalized Puiseux series, one can find a series expansion of the dynamic viscosity
function, M (Equation (9)), for small ŝ→ 0 :

Mŝ=small ≈
√

8
ŝ
+

√
ŝ

3
√

2
−
√

ŝ3

64
√

2
+

47
√

ŝ5

34, 560
√

2
=

(ŝ(ŝ(47ŝ− 540) + 11, 520) + 138, 240)
34, 560

√
2
√

ŝ
. (81)

An inverse Laplace transform of the above function gives an approximation in the
time domain that is valid for relatively large dimensionless times:

mt̂=large ≈
ν

R2

[√
8

π t̂
− 1

6
√

2π t̂
3
2
− 3

256
√

2π t̂
5
2
− 47

18, 432
√

2π t̂
7
2

]
H(t), (82)

where H(t) is a Heaviside step function, and t̂ = t ν
R2 .

Moreover, for large ŝ→ ∞ , one can expand the M function by using the Hankel
asymptotic expansion of the modified Bessel functions (p. 377 in Reference [64]):

Ip(z) =
ez
√

2πz

[
1− 4p2 − 1

8z
+

(
4p2 − 1

)(
4p2 − 9

)
2!(8z)2 −

(
4p2 − 1

)(
4p2 − 9

)(
4p2 − 25

)
3!(8z)3 + . . .

]
(|arg z| < π/2). (83)

The use of the above expansion in our case results in the following:√
I0(z)
I2(z)

=

√√√√1 + 1
8z +

9
128z2 +

75
1024z3

1− 15
8z +

105
128z2 +

315
1024z3

. (84)

The series expansion for z = ∞ finally gives the following:√
I0(z)
I2(z)

= 1 +
1
z
+

1
z2 +

7
8z3 +

617
1024z4 . (85)

The above expansion is similar to the one presented by Holmboe [33] and by Brown
and Nelson [75]. Substituting for z =

√
ŝ, one obtains the following:

Mŝ=large ≈ 1 +
1√

ŝ
+

1
ŝ
+

7

8
√

ŝ3
. (86)



Materials 2022, 15, 4364 19 of 26

The inverse Laplace transform of the above solution gives an approximate form
(correct for relatively small dimensionless times) of the dynamic viscosity function in the
time domain:

mt̂=small ≈
ν

R2

δ(t)
R2

ν
+

1√
π t̂

+ 1 +
7
4

√
t̂
π

. (87)

In order to emphasize the influence of the number of power expansion terms on the fit
of the obtained results, as presented in Figures 9 and 10, a comparison is made here for two
cases of analytical solutions, i.e., for k = 0 . . . 3 and k = 0 . . . 5. Figure 9 shows a comparison
of the histories obtained in the time domain (discussed briefly above). Meanwhile, in
Figure 10, the solutions for k = 0 . . . 3 and k = 0 . . . 5 are compared with the output function
(Equation (9)) and its quasi-steady counterpart (Equation (13)). Figure 9 compares the
solutions in dimensionless form, i.e., m̂ = m R2

ν .

Figure 9. Comparison of novel solution received for initial power terms in time domain: (a) Extended
range, (b) Enlarge.

Figure 10. Comparison of novel solution received for initial power terms in the frequency domain:
(a) Realis graph, (b) Imaginaris graph.

The presented comparisons show that the use of the analytical solution based only
on the first three expansions of power k = 0 . . . 3 is not sufficient to describe the analyzed
dynamic function. The approximate form of the solution in the time domain, which is
based on the first five power expansions k = 0 . . . 5, gives a much better fit. It seems that
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the next five exponential terms should guarantee a smooth transition in the time domain to
the solution that is the inverse transformation of the dynamic viscosity function expansion
into the Puiseux series (red dotted line). Knowledge of this transition will allow us to
approximate a complex analytical solution and to propose a simplified analytical solution
of water hammer. The presented comparison shows that the inverse Laplace transform with
asymptotic expansion (blue line of line graph) is suitable for use in the dimensionless time
domain in the range of 0 < t̂ < 10−1. For dimensionless times t̂ ≥ 1, this function can also
be correctly modelled with the help of the quasi-steady solution (line of large green dots).
The transitional range of this function (10−1 ≤ t̂ ≤ 100), in which significant dynamics
of its variability are observed, is the range that is responsible for the water hammer in
oil–hydraulic systems (0.05 ≤ Wh ≤ 0.5). Hence, it is important to further extend the
analytical solution proposed in this paper.

The obtained analytical solutions based on the initial power expansions k = 0 . . . 3
and k = 0 . . . 5 were also compared with the exact solution of the analyzed function in the
frequency domain (Figure 10). Both the comparison of the real part (Figure 10a) and the
imaginary part (Figure 10b) show that successive expansions extend the compatibility range
of the new solution. Therefore, it is worth extending the analyzed analytical function (by
successive powers of k) so that it represents a high accuracy in the range of dimensionless
frequencies significant from the practical point of view, i.e., 100 ≤ Ω ≤ 101.

6. Conclusions

The novel solutions presented in this paper are an important first step in the develop-
ment of a complete analytical solution of water hammer equations; however, we consider
them to be worthy of sharing with a wider group of researchers. A complete analytical
solution can be obtained with the help of the approach presented in this paper through
machine learning, as well as with the help of artificial intelligence (AI). To develop such
solutions, it is necessary to generalize the series based on the zeros of Bessel functions of
the Calogero–Ahmed type. To this day, we know too little about these infinite series. Their
polynomial solutions for higher power expansion of analyzed dynamic viscosity function
looks to be the key point to completely describe the theory of such Laplace inverses. The
extended final solution that will be obtained in the future can be approximated by finite
exponential series, exactly those that are currently used in weighting functions for effective
numerical calculations of the wall shear stresses in unsteady pipe flows.

Further investigations aimed at finding the final simplified solution to the problem
analyzed by the authors in this paper are underway. We should learn whether the solutions
presented in recent works in the field of mathematical physics that were kindly proposed
by the reviewers would help in the development of the simplified analytical solution of
unsteady pipe-flow equations [76–79]. The initial attempt to find/formulate a generalized
analytical formula for water hammer equations in the time domain by using the dynamical
viscosity function shows that such a solution will probably be similar in form to the
differential form of describing the fractional Bessel functions, as well as a derivative
equation that describe the Laguerre polynomials (see Equation (25) in page 319 in Doetsch’s
book [80]). However, the missing important part will be the definition of new polynomials
that appear during calculation (marked red terms in Appendix B of this paper).

The presented and discussed new method seems to be very promising, as it can be
used not only in fluid mechanics but also in other basic sciences: mathematics, materials en-
gineering, thermodynamics, physics, and medicine; it can also be used generally wherever
there are solutions based on the similar functions discussed in this paper, i.e., exponential
functions and series of the Calogero–Ahmed type.

We do hope that researchers will be able to further simplify the proposed time domain
analytical solution. Perhaps they will also manage to simplify the final form, that is, to
collapse our solution to the final form; in other words, they need to complete the opposite
task to the one performed in Laplace domain, where we decomposed the original function
into a doubly infinite series.
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Nomenclature

Name Description Unit
c pressure wave speed (m/s)
H Heaviside step function (-)
j unit imaginary number: j =

√
−1 (-)

L pipe length (m)
m dynamic viscosity function in the time domain (1/s)
M dynamic viscosity function (-)
p average pressure as a function of x and t (Pa)
p axial pressure in cylindrical coordinates—function of x and t (Pa)
r independent variable for radial direction in cylindrical coordinates (m)
R inner pipe radius (m)
s Laplace complex variable (s−1)
ŝ dimensionless Laplace variable (-)
t time (s)
t̂ dimensionless time (-)
v average velocity in cross-section (m/s)
v axial velocity in cylindrical coordinates—function of x, r, and t (m/s)
v0 initial velocity in pre-transient flow (m/s)
Wh water hammer number: Wh = νL/

(
cR2) (-)

x independent variable for axial direction in cylindrical coordinates (m)
Z Joukowsky pressure-rise formula: Z = ρcv0 (Pa)
δ Dirac delta function (-)
ηi consecutive zeros of first-kind Bessel functions of the second order (-)
µ dynamic viscosity (Pa·s)
µi consecutive zeros of first-kind Bessel functions of the zero order (-)
ν kinematic viscosity (m2/s)
ρ liquid density (kg/m3)
ω frequency (s−1)
Γ gamma function (-)
Ω dimensionless frequency (-)
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Appendix A

The Calogero–Ahmad series for zero-order first-kind Bessel functions (h = 0) used in
this paper are as follows:

∑∞
j = 1
j 6= i

1
µ2

i − µ2
j
= − 1

2µ2
i

. (A1)

∑∞
j = 1
j 6= i

1

µ2
j

(
µ2

i − µ2
j

) =
µ2

i − 6
4µ4

i
. (A2)

∑∞
j = 1
j 6= i

1

µ4
j

(
µ2

i − µ2
j

) =
µ4

i + 8µ2
i − 80

32µ6
i

. (A3)

∑∞
j = 1
j 6= i

1

µ6
j

(
µ2

i − µ2
j

) =
µ6

i + 6µ4
i + 48µ2

i − 672
192µ8

i
. (A4)

∑∞
j = 1
j 6= i

1(
µ2

i − µ2
j

)2 =
µ2

i − 5
12µ4

i
. (A5)

∑∞
j = 1
j 6= i

1

µ2
j

(
µ2

i − µ2
j

)2 =
4µ2

i − 23
12µ6

i
. (A6)

∑∞
j = 1
j 6= i

1

µ4
j

(
µ2

i − µ2
j

)2 =
3µ4

i + 56µ2
i − 424

96µ8
i

. (A7)

∑∞
j = 1
j 6= i

1(
µ2

i − µ2
j

)3 =
µ2

i − 6
16µ6

i
. (A8)

∑∞
j = 1
j 6= i

1

µ2
j

(
µ2

i − µ2
j

)3 =
19µ2

i − 110
48µ8

i
. (A9)

Appendix B

(a) Solutions in the time domain

k = 1 : ∑∞
i=1 e−µ2

i
ν

R2 t. (A10)

k = 2 : t ∑∞
i=1 e−µ2

i
ν

R2 t
+

R2

ν ∑∞
i=1

(
1

µ2
i

)
e−µ2

i
ν

R2 t. (A11)

k = 3 :
t2

2 ∑∞
i=1 e−µ2

i
ν

R2 t + t
R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t
(

3
2µ2

i

)
+

(
R2

ν

)2

∑∞
i=1 e−µ2

i
ν

R2 t
(

8− µ2
i

4µ4
i

)
. (A12)

k = 4 :
t3

6 ∑∞
i=1 e−µ2

i
ν

R2 t
+

t2

2
R2

ν ∑∞
i=1 e−µ2

i
ν

R2 t
(

2
µ2

i

)
+ t
(

R2

ν

)2

∑∞
i=1 e−µ2

i
ν

R2 t
(

19− 2µ2
i

6µ4
i

)
+

(
R2

ν

)3

∑∞
i=1 e−µ2

i
ν

R2 t
(

18− 3µ2
i

4µ6
i

)
. (A13)

k = 5 : t4

24 ∑∞
i=1 e−µ2

i
ν

R2 t
+ t3

6
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ν ∑∞
i=1 e−µ2

i
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(

5
2µ2

i
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2

(
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∑∞

i=1 e−µ2
i

ν
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55−5µ2
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12µ4
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(

R2
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∑∞

i=1 e−µ2
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350−55µ2
i

48µ6
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(
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∑∞
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i
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i

)
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(A14)
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(b) Solutions in the Laplace domain

k = 1 : ∑∞
i=1

1
µ2

i
ν

R2 + s
. (A15)

k = 2 : ∑∞
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1(
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. (A16)
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∑∞
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∑∞
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k = 5 : ∑∞
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(A19)

In the above solutions the values of final coefficients were found by using the Calogero–
Ahmed identities [61–63] discussed in these papers. The coefficients highlighted in the red
color form unknown polynomial series. If completely described, they should be termed as
Calogero–Ahmed polynomials.

Appendix C
This appendix shows the intermediate forms of the selected solutions. The purpose of

showing them is to give the reader an insight into how to find a mathematical formula for
the higher powers of the presented analytical solution:

C = t3
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i=1 e−µ2

i
ν

R2 t + t2 R2

ν ∑∞
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∑∞
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i

ν
R2 t
(

1
µ4

i
+ 2 µ2

i−5
12µ4

i
− 2 3µ2

i−18
12µ4

i

)
+

4
(

R2

ν

)3
∑∞
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As of today, the authors of this work did not find such a universal formula; however,
this does not mean that it does not exist.
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